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Abstract
In this paper, we introduce WebReco, a web-scale webpage recom-

mendation system in Bing. Our product appears as Explore Further
on the first page of Bing search results and is built to serve inter-

esting, engaging, and complementary webpage recommendations

alongside search results. We start by outlining our product north

star, defining what it means to provide a good webpage recom-

mendation for our product. We describe our evaluation method-

ology and provide a comprehensive overview of our production

recommendation system, detailing each component from candidate

generation to ranking. We dive into specifics of feature engineering

and serving, model development and evolution, and how we scale

our components to handle billions of webpages. We also share our

approach to building a recommendation triggering model, a method

for dynamically deciding the recommendation count given certain

constraints. This paper provides a detailed look at building and

optimizing a web-scale recommendation system, highlighting the

design choices we made.
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1 Introduction and Product Overview
Our product delivers query-agnostic webpage recommendations

directly on the first page of Bing search results. Our goal is to

enhance a Bing user’s search experience by delivering engaging,

complementary and exploratory webpage recommendations that

are not neessarily tied to the narrow intent of the query. We have

built, to our knowledge, one of the largest recommendation sys-

tems in the industry with a total index size of over 200 billion

webpages. We serve billions of impressions a month across two

major recommendation surfaces:

(1) Inline Scenario: Displayed below the top three search re-

sults, these recommendations appear as users view the initial

search results page.

(2) Clickback Scenario: Shown when users return to the Bing

search tab after clicking on a search result, providing addi-

tional webpage suggestions tied to the clicked URL.

We outline the north star of the product for the value we aim

to bring to Bing users in Figure 1. In this paper, we’ll use the term

URL1 for the trigger webpage (the search result) and URL2 for a

webpage recommendation. A good webpage recommendation is

both trustworthy and provides additional value beyond the URL1

content. The very best recommendation experiences are created

by presenting webpages that either encourage exploration of re-

lated topics, offer a reliable alternative perspective, or are capable

of anticipating the next informational need of the user. Explicitly

articulating what constitutes a good and a bad webpage recommen-

dation was challenging to achieve consensus on, but was crucial.

Having an explicit product north star enabled us to build RecoDCG,

an LLM-powered recommendation quality metric with a prompt

that incorporated the product goals into scoring instructions. LLMs

give us the ability to build a metric that captures the north star of

the product, thus motivating the team to productionize techniques

that shift the product in the right direction.

In Figure 2, the jainar.net webpage about ’The Jain Diet’ is the

URL1 and the webpage recommendations under Explore Further

are referred to as URL2s. For context, Jainism is a religion that

originated in ancient India. In this example, our system generates

a diverse set of recommendations: the "Jain Food Habits" web-

page serves as an alternative resource, the "Jain Recipes" webpage

anticipates a likely subsequent user intent for those interested in

preparing meals that adhere to the dietary constraints, and the "Jain

Dietary Practices: Unveiling Their Health Benefits" webpage offers

users the opportunity to explore an additional aspect, specifically

the health benefits of the diet.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
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Figure 1: Product North Star for Web Recommendations

In this work, we provide a comprehensive overview of the devel-

opment and evolution of our web-scale recommendation system,

illustrated in Figure 3. We provide a deep dive of our end-to-end sys-

tem, including metrics, the motivations behind our design choices,

the models we deploy, feature engineering, and the data pipelines

and mechanisms used for online feature serving.

Figure 2: Inline Scenario

2 Evaluation: Offline and Online Metrics
2.1 Offline: RecoDCG
Relevance and quality labels from human judges are expensive and

slow to obtain. LLMs have been shown to be strong and consistent

relevance judges, often outperforming human labelers[15]. For ex-

perimentation agility and to develop a quality signal, we developed

a LLM-powered recommendation quality metric called RecoDCG to

evaluate our production system and new techniques. At the heart

of this metric is a pointwise scoring prompt that answers the ques-

tion how good of a recommendation is URL2 for a URL1, reasoning
over individual recommendation aspects (topicality, location, au-

thority, and spam) before determining a recommendation quality

score from 0 to 4. This prompt is tuned and evaluated against a

human-judged URL1-URL2 quality evaluation set to ensure that the

prompt accurately measures recommendation quality.

RecoDCG is based on the standard Discounted Cumulative Gain

(DCG) formula, with the key distinction being the use of pointwise

recommendation quality scores generated by a Large Language

Model (LLM) as the relevance labels. As the RecoDCG measure-

ment set, we use a diverse set of several thousand URL1s derived

from historical queries from Bing users. This set is constructed to

adequately represent a wide range of markets and languages. We

scrape our production service for the top 5 ranked webpages for

each URL1 in the evaluation set and calculate the RecoDCG@1,

RecoDCG@3 and RecoDCG@5.

2.2 Offline: ClickNDCG
To facilitate rapid offline evaluation of click prediction models

during the ranking stage, we utilize an offline metric termed Click-

NDCG. This metric acts as an offline proxy for online click-through

rate (CTR) and thus we refer to it as an inner-loop metric.

To collect logs that do not suffer from position or selection bias,

we run a low-traffic online experiment where we randomly choose

the top 5 URL2s from the ranking stage candidates to show to users,

as well as the order. We retain logs with at least one satisfied (SAT)

click, defined as a click where the user’s information need was met.

As a heuristic, we consider clicks with dwell times above 30 seconds

to be SAT clicks. We calculate NDCG, assigning a relevance score

of 100 for satisfied clicks (in order to make the metric easily inter-

pretable) and 0 otherwise. Our experiments show that ClickNDCG

closely aligns with our production system’s online CTR, reflecting

improvements or regressions accurately.

Figure 3: Production System Overview

2.3 Offline: Recall@k
To evaluate the Collaborative Filtering (CF) recall path shown in

Figure 3, we report Recall@k. We sample a fixed set of URL1s

that represent WebReco traffic and construct the evaluation set

by collecting co-occurrence clicks (detailed in Section 3.1) from

Bing session logs over a 1 week time frame after the training data

window. A strong CF implementation will be able to generalize

and obtain a Recall@k that handily beats the performance of the

CoClick memorization path over the same CoClick graph. We use

𝑘 ∈ {30, 100} for reporting ablations.

2.4 Online: Page Click Through Rate (PTR)

𝑃𝑇𝑅 =
Impressions with at least 1 click on Explore Further

Total Bing Impressions
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2.5 Online: Conditional Click Through Rate
(CTR)

𝐶𝑇𝑅 =
Impressions with at least 1 click on Explore Further

Total Explore Further Impressions

3 Candidate Generation
Our production system has multiple candidate generators, referred

to as recall paths. Each recall path is tuned to produce a specific

number of candidates from Bing’s 200 billion webpage index. These

candidates are aggregated and de-duplicated before the ranking

stage. The recall paths include:

3.1 CoClick (Co-occurrence Click) Recall Path
We define a CoClick as an event where multiple Bing user brows-

ing sessions include clicks on both webpage A and webpage B.

By this definition, CoClick counts the degree of co-occurrence in

user sessions and implicitly represents the relatedness of the two

webpages. Webpage B represents a common destination post query

reformulations or shifts in user intent. Following the CoClick def-

inition, we generate a CoClick graph across all webpages in the

Bing index where the edge strength corresponds to the number of

co-occurrence clicks over the considered time window. We store

the CoClick counts in a performant key-value store where the key

is the URL1 and the value is a list of top 30 URL2s based on CoClick

counts. At serving time for a request corresponding to a specific

URL1, our CoClick recall path generates candidates by returning

the stored URL2 candidates.

The CoClick key-value store is updated with a weekly pipeline

that processes billions of logs, taking a full day to run on a highly

distributed compute cluster. The pipeline logic and pre-processing

steps are detailed in the diagram in Figure 4.

Figure 4: CoClick Weekly Update Pipeline

3.2 Collaborative Filtering (CF) Recall Path
In this recall path, our recommendation system employs an item-to-

item collaborative filtering (CF) approach. We train our CF model

on the CoClick counts matrix constructed using over a year of Bing

search logs. We employ Info-NCE contrastive loss [10] to optimize

𝜏 = 0.01 𝜏 = 0.025 𝜏 = 0.07 𝜏 = 0.2

𝐾 = 5 0.49 0.54 0.63 0.44

𝐾 = 10 0.50 0.55 0.58 0.43

𝐾 = 20 0.41 0.44 0.62 0.41

Table 1: Recall@100 reported for ablations for 𝐾 and 𝜏 .

our embeddings. We conducted a comprehensive evaluation of

various loss functions, including commonly used objectives such

as Bayesian Personalized Ranking (BPR) [12] and binary hinge loss.

Among these, the Info-NCE loss function, when carefully tuned,

emerged as the superior choice, demonstrating the most effective

performance across our experiments.

𝐿(𝑢1, 𝑢2, {𝑢𝑖 }𝑁𝑖=1) = − log

(
exp(sim(𝑢1, 𝑢2)/𝜏)

exp(sim(𝑢1, 𝑢2)/𝜏) +
∑𝐾
𝑖=1 exp(sim(𝑢1, 𝑢𝑖 )/𝜏)

)
Where:

– sim(𝑢𝑖 , 𝑢 𝑗 ) denotes the similarity function between the em-

beddings 𝑢𝑖 and 𝑢 𝑗 . We choose cosine similarity.

– 𝜏 is the temperature parameter that scales the similarity

scores, affecting the sharpness of the softmax distribution.

Lower values of 𝜏 increase the separation between positive

and negative pairs, while higher values make the differences

less pronounced. We find that the choice temperature has a

significant impact on the results and adjust 𝜏 to 𝜏 = 0.07.

– {𝑢𝑖 }𝑁𝑖=1 is a set of 𝐾 negative embeddings used to contrast

against the positive pair. We tune 𝐾 to 𝐾 = 5.

During training, we define the loss weight w for each instance

as:

w(𝑢1, 𝑢2) = log(CoClick_Count(𝑢1, 𝑢2) + 1),
For each URL, we randomly sample positives from its neighbors

in the CoClick graph (the set of URLs with which it has a CoClick

count > 0). For each training tuple (URL1,URL2), we randomly

sample the negative URL samples from all URLs.

Table 1 is a subset of our hyper-parameter ablations illustrating

the importance of tuning the CF hyper-parameters well to maximize

performance on our task. We find that the InfoNCE loss for our

task is highly sensitive to both 𝐾 and 𝜏 . Our CF training uses the

stochastic gradient descent (SGD) optimizer, and we find that the

learning rate scheduler and associated hyperparameters have a

considerable impact on the quality of the learned embeddings (as

evaluated by Recall@k). While optimizers such as rAdaGrad [16]

and Adam [9] converge faster on our training data, we find that

SGD trained on more iterations generalizes better on our test sets.

We find the Step Decay learning rate scheduler [7] to be critical in

obtaining strong results, and tune the hyperparameters extensively

on a subset of the training data before kicking off the large-scale

jobs (which take in the order of weeks to converge).

3.2.1 Sampling strategy during training: We have the option to

randomly shuffle and use the complete set of interactions (clicks) in

every epoch (interaction-based sampling) or instead to iterate over

every URL1 in an epoch and uniformly randomly sample a URL2

from its CoClick neighbors (URL1-based sampling). Note that unlike
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interaction-based sampling, URL1-based sampling does not guaran-

tee that all interactions will be used during training. However, in

practice this concern is alleviated, since we train our CF implemen-

tation to convergence at around 10,000 epochs. Interaction-based

sampling leads to head (popular) URL1s receiving significantlymore

gradient updates than tail URL1s, thus biasing the embeddings to-

ward better performance on head URL1s. However, our CoClick

path is already a robust candidate generator for URL1s that are pop-

ular and receive many clicks, and it is updated weekly. Therefore,

our objective with CF is to develop a complementary candidate

generator that can retrieve relevant recommendation candidates

even for body or tail URL1s that receive few clicks and are not cov-

ered by the CoClick path. URL1-based sampling treats each URL1

equally per epoch, leading to learned embedding representations

that perform significantly better on body and tail URL1s. Although

initial versions of our CF implementation leveraged interaction-

based sampling, we achieved a significant jump in performance

with URL1-based sampling on our CF test set: a 3% absolute increase

in Recall@100.

We mention these details to emphasize the point that a well-

tuned traditional model can be extremely powerful in a real-world

setting especially when training at scale with billions of interac-

tions; we have experimented with several newer models that learn

from user-item (or item-item) interactions but find it challenging

to surpass both the performance and efficiency of this CF imple-

mentation.

3.2.2 Collaborative Filtering at Scale To scale collaborative filtering

(CF) to handle a billion-scale interaction matrix (CoClick counts),

we developed a distributed implementation of our CF model in

C++. Our approach leverages model parallelism by partitioning the

training data and embeddings along a 2D grid. The embeddings

are partitioned along the same row and column grid boundaries.

Workers store multiple training data shards and only the embedding

vectors representing documents in the local training data shards.

Stratified sampling allows distributed workers to train asyn-

chronously on a local block without intermediate communications.

After all workers train on a local shard, the updated embedding

weights are exchanged and the next block begins [14]. The em-

bedding communications are sparse such that only the sampled

vectors are communicated in each stage to minimize bandwidth

consumption. The stratified sampling and sparse communication

allow the training to only store a single representation of the full

model in memory; gradients are only allocated in a sparse form and

never communicated. Finally, we use data parallelism within each

block, where threads train on samples asynchronously without

synchronization [11].

This distributed implementation enables us to train on a CoClick

count matrix for 2 billion webpages, with dimensions of 2 billion by

2 billion, making it one of the largest collaborative filtering systems

in the industry to date.

3.2.3 Online Serving: We create a vector index FAISS [6] using the

learned URL2 embeddings and inject the learned URL1 embeddings

into a key-value store. At serving time, for a specific URL1, we

retrieve its embedding from the key-value store and utilize Approx-

imate Nearest Neighbor (ANN) search to obtain URL2 candidates.

3.3 SAT CF Recall Path
The collaborative filtering (CF) recall path discussed in the prior

section involves training the model on Bing session CoClick data.

We develop a new CF recall path leveraging user satisfied (SAT)

clicks on our WebReco production system. We collect SAT click

count data from our production logs, generating (URL1, URL2) pairs.

With identical training settings, we learn the CF embeddings for

350 million URL1s and URL2s, training on a satisfied click count

matrix of dimensions 350M by 350M URLs. We serve this recall

path as a separate FAISS vector index, following the same online

flow as described in Section 3.2.3. On deployment, this recall path

led to a 2% relative increase in online CTR over our production

baseline.

3.4 Two-tower Dense Retrieval Model
We fine-tune a two-tower 6-layer XLM-Roberta [5] based trans-

former encoding model. The two towers are fed URL1 and URL2

features, respectively. We share the URL1 tower and the associated

full Bing embedding index with other teams (e.g., Web Search Re-

trieval). Consequently, during training, the URL1 tower is frozen

and we optimize the parameters only for the URL2 tower. The

input schema for each tower consists of the URL, Title, and Snip-

pet concatenated with [SEP]. The title is generally the webpage

HTML’s primary title and the representative snippet is extracted

from the webpage’s text content with the help of text extraction

models and finally a snippet ranker. We input this text sequence

into XLMR, using the last layer’s [CLS] token embedding followed

by an MLP head to produce the final embedding vector. We employ

the Info-NCE contrastive loss [10] for training, with a temperature

parameter set to 0.02.

3.4.1 Training Data: Training samples are sourced from our pro-

duction system’s click logs. Positive samples are generated as pairs

of the form URL1-URL2 from an impression, where URL2 was

clicked and had a dwell time exceeding a predefined threshold.

While not a perfect heuristic, requiring the dwell time threshold

helps improve the training data quality by ensuring that for that

impression, the user’s information need was met. For sampling

negative URL2s, we include in-batch negatives and ANCE [17]

hard negatives, which are randomly sampled from the top 100 to

300 webpages retrieved via Approximate Nearest Neighbor Search

(ANNS).

3.4.2 Building a SPANN index: We select URLs for our embedding

index by ranking the top 500 million URLs based on aggregate click

counts from 6months of Bing search logs. The full Bing index is over

200 billion webpages, but given cost and latency considerations, for

our feature, we limit the index to the top 500 million most engaged

with URLs. We then use the URL2 tower to performmodel inference

and generate embeddings for these 500 million webpages and build

a SPANN (Scalable and Parallel Approximate Nearest Neighbor) [3]

index for fast ANN search.

3.4.3 Online Serving: At serving time, for a given URL1 we fetch

its embedding from the key-value store for the full Bing index.

SPANN is designed specifically for billion-scale approximate nearest

neighbor search, enabling us to search over our URL2 embedding

index to retrieve the top 30 URL2s with minimal latency. To help
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with latency, we maintain a cache of the ANN search results with a

cache expiration time of 6 hours to control the cache size.

3.5 LLM Powered Q’ Recall
This recall path uses LLMs to generate diverse complementary web-

site candidates relevant to key subtopics related to the URL1 trigger

content. We designed and extensively tuned a Q’ query generation

prompt that leverages webpage content features namely the URL,

title, and webpage body (processed and cleaned from the webpage

HTML) to generate an array of (on average) 6 queries that cover

a diverse set of aspects of the webpage content and complemen-

tary topics. We use Bing Web search as our retrieval engine. A

high-throughput service was developed for efficient Bing scrap-

ing, followed by post-processing filters such as spam detection and

deduplication. We obtain the top 10 result URLs for each generated

query. For each URL1, we store an array of upto 30 URL2 candidates

in a highly performant key-value store for online serving.

In order to scale Q’ query generation inference to hundreds of

millions of URLs, we turned towards fine-tuning Small Language

Models (SLMs). We experimented with several LLMs and found

Mistral-7B
1
the best suited for this task in terms of task perfor-

mance and throughput. We first create a dataset of URLs and the

associated GPT-4 generated Q’ queries. We fine-tuned Mistral-7B,

a 7.3 billion parameter model, with supervised fine-tuning (SFT) to

match GPT-4’s performance on the task, achieving a 60x increase

in inference throughput.

With the fine-tuned Mistral-7B, we were able to substantially

scale our Q’ query generation and use our method to build an index

supporting 600 million URL1s, resulting in significant improve-

ments in recommendation quality (as evaluated with RecoDCG@5)

as well as online CTR.

A/B Test Online CTR RecoDCG@5

Q’ Recall (GPT-4) +0.89% +0.760

Q’ Recall (Mistral-7B) +1.71% +0.762

Table 2: Online A/B results and RecoDCG@5 reported with
the baseline system as control for all rows.

3.6 Fresh Recall Path
We define a query as fresh if it reflects the user’s need for the latest

information. We consider a URL a fresh webpage candidate if it is

published (or updated) recently, meets a minimum pagerank [1]

score threshold, and passes a set of quality filters such as spam

and adult classifiers. The core challenge we address here is two-

fold. First, thousands of fresh webpages are being published every

second and the SPANN ANN embedding index that we describe in

Section 3.4 is built for scale but cannot handle updates to its index

at this rate. Furthermore, newly published fresh documents have

not garnered sufficient impressions and user engagement and, as

such, generally are not covered by our other recall paths. To address

the fast update challenge, we build a new fresh recall path with a

LightGBM query fresh intent classification model, a near real-time

1
https://mistral.ai/news/announcing-mistral-7b/

streaming pipeline to determine which URL1s we will trigger the

fresh recall path for and leverage a streaming ANNS (Approximate

Nearest Neighbor Search) index.

3.6.1 Query fresh intent classification model: Since we are con-

strained from increasing latency and GPU requirements for serving,

we cannot deploy and serve a text model, such as a transformer, for

this task. Instead, we developed a LightGBM model for the query

fresh intent classification task: determining from the query whether

meeting the user’s information need requires the latest (fresh) doc-

uments. It is a LightGBMmodel trained with the BCE (Binary Cross

Entropy) objective on around binary 30K Bing user queries with

high-quality human judge labels. We do a lot of feature engineering

to develop several strong query-level signals, such as:

(1) Average document age (the time since themost recent update

to the page when crawled) over the top N retrieved webpages

from the Bing search retrieval and ranking stack.

(2) The average of the top k (𝑘 ∈ {1, 3, 5, 10}) documents’ ages

when ranked by several Bing query-URL relevance and click

prediction rankers (both transformer and LightGBM) models

in our Bing ranking stack. These scores have already been

computed and are available at this stage for the top N web-

pages. We find that features such as the difference between

the average document age of the top 𝑘 and the average doc-

ument age of the bottom 3, computed for each of the Bing

rankers, are also quite powerful.

(3) We compute features such as for the average Bing ranker

scores of the top 𝑘 documents (𝑘 ∈ {1, 3, 5, 10}) when ranked

by document age.

3.6.2 Streaming Pipeline for collecting URL1s: Our near real-time

streaming pipeline runs for each Bing search impression and helps

collect a rolling set of URL1s on which our system’s fresh recall

path should trigger. It comprises of the following steps:

(1) The LightGBMmodel classifies the user query as fresh intent.

(2) For fresh intent queries, URL1 (top-ranked or clicked) under-

goes spam, adult and popularity filters.

(3) We perform near real-time embedding inference using the

URL1 tower from Section 3.4 and store URL1 slong with the

embedding in a key-value store.

3.6.3 Streaming Similarity Search: The FreshDiskANN ANN Index
In order to have an ANNS (Approximate Nearest Neighbor Search)

algorithm that could accommodate real-time fresh document addi-

tions and fast removals based on expiry time without sacrificing

ANN performance, we turned to FreshDiskANN [13]. We inject

newly published or updated documents at the rate of thousands of

webpages per second into this FreshDiskANN index. To control the

size of the index, we set a 5-day expiration on the injected pages.

3.6.4 Online Serving flow: For any Bing impression, the online

flow is the following:

(1) Check if the Web Reco trigger URL1 is present in the fresh

URL1 key-value store populated by the streaming pipeline

and fetch its URL1 embedding

(2) Conduct ANNS (Approximate Nearest Neighbor Search) us-

ing the FreshDiskANN index to obtain upto 30 URL2 candi-

dates.
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(3) Enforce quality checks on returned URL2 candidates such

as a minimum URL1-URL2 embedding cosine similarity and

a spam check, merge with candidates from the other recall

paths, and send the candidates to the ranking stack.

3.6.5 Online Results Online A/B experiment results for introduc-

ing the fresh recall path show a +34.79% relative increase in PTR

and +20.17% relative increase in CTR computed on the fresh seg-

ment (subset of all impressions with queries with a detected fresh

intent), when compared to the production baseline.

4 Ranking
The BingWeb Recommendations ranking stage consists of, in order:

(1) Stage 1: LightGBM ranker with a set of inexpensive features,

primarily Counting Features

(2) Stage 2.a: A multi-task transformer cross-encoder model

with two heads that that are optimized for pairwise click

prediction and recommendation quality tasks respectively

(3) Stage 2.b: LightGBM ranker with a more comprehensive set

of features, including the cross-encoder model scores

(4) Stage 2.c: Linear Combination between the Stage 2 LightGBM

ranker score and the recommendation quality head score

In the following section, we describe counting features, the most

important feature set used in our ranking stack.

4.1 Counting Features
4.1.1 Definitions:

Quickback: A quickback refers to a user click where their

information need was not satisfied, leading them to return

to the Bing search page. Based on user analysis, clicks with a

dwell time of less than 20 seconds are considered quickbacks.

Counting Features: Counting features refer to click, quick-

back, and impression counts aggregated at the levels of URL1-

URL2, URL1, and URL2.

4.1.2 URL1-URL2 Aggregation: We process our production logs to

generate counting features over three rolling time windows: the

past 7 days, 28 days, and 168 days. As described in Section 1, our

product has two surfaces: the inline scenario and the clickback

scenario. Since user behaviors differ between the two scenarios,

we calculate both a scenario-specific set of counting features and

aggregate counting features across both scenarios. We further track

position-specific click and impression counts, generating increas-

ingly granular features such as QuickbackCount_28d_clickback
or ClickCount_7d_position_0_inline.

4.1.3 Daily Counting Features: We also generate daily counting fea-

tures for each of the previous 6 days, such as ClickCount_1d_d1 (1-
day counting feature for the previous day) and ClickCount_1d_d2
(1-day counting feature for two days ago).

4.1.4 URL1 Aggregation: We further aggregate the URL1-URL2

counting features by grouping them by URL1 to generate features

such as ClickCount_7d_URL1, which represents "the number of

times in the past 7 days that an Explore Further recommendation

tied to URL1 received a click".

4.1.5 URL2 Aggregation: Similarly, we aggregate the URL1-URL2

counting features by grouping them by URL2 to generate features

such as ClickCount_7d_URL2, which represents "the total num-

ber of times in the past 7 days that URL2 was recommended and

received a click, across all URL1s".

4.1.6 CoClick counting features: We also inject the URL1-URL2

CoClick count described in Section 3.1, as it proved to be a valuable

feature to our LightGBM rankers.

4.1.7 Online Serving: Our counting features are updated on a daily

cadence, and we illustrate the pipeline in Figure 5. For online serv-

ing, all counting features (aggregated on URL1-URL2, URL1, and

URL2) are injected into performant key-value stores based on their

aggregation key.

Figure 5: Counting Features Daily Pipeline

4.2 LightGBM Rankers:
We have two LightGBM [8] rankers, Stage 1 and Stage 2. As shown

in the system diagram in Figure 3, the Stage 1 LightGBM ranker

provides the top 30 documents after scoring the few hundred can-

didates returned by the candidate generation stage and was one of

the first rankers we introduced to our system. Since our feature ap-

pears on the first page of Bing search results, there are hard latency

requirements. As such, since the Stage 1 LightGBM ranker scores

several hundred webpages, it consumes a smaller set of features that

are easily available at this stage: URL1-URL2 aggregated counting

features and embedding cosine similarity from the two-towermodel.

Since the Stage 2 LightGBM ranker scores only 30 candidates, it

leverages a much larger feature set: including the cross-encoder

model scores, URL2 characteristics (depth, length), text attributes

(title and snippet length, highlight count), URL1-URL2 counting

features and their interaction features (for e.g. 7d CTR, 28d CTR,

168d CTR). When first introduced, Stage 2 LightGBM deployment

achieved a gain of + 1.25% in CTR. This underscores the value of

implementing a lightweight tree-based Learning to Rank (LTR)

model that integrates both counting featues that describe historical

user interaction behavior and RecoLM scores that are computed

using the text signals. In fact, the RecoLM pairwise click prediction

head score is the most important feature by both split count and

gain for the Stage 2 LightGBM ranker.
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The LightGBM rankers are trained on several weeks of historical

logs from our production system. The training labels are obtained

by applying a piecewise utility function that transforms the logged

dwell time. The utility function is designed to penalize extreme

quick backs, defined as clicks with a dwell time of 0-5 seconds,

which are indicative of user dissatisfaction with the clicked URL2.

Therefore, non-clicked documents are assigned a higher label than

those associated with quick backs. Beyond the initial 5 seconds, the

function increases linearly until reaching the 30-second mark, at

which point the click is considered a satisfied click. At this threshold,
the utility value is further enhanced by adding a constant boost.

The utility function of the piecewise function is illustrated by the

plot in Figure 6.

4.2.1 LightGBM ranker improvements: This section describes a set

of ranker improvements we sequentially added to our production

LightGBM rankers, achieve online click metric gains.

• Since we train on non-aggregated raw logs, we add instance

weights based on traffic, giving a low weight to highly fre-

quent (head) URL1s and a large weight to less frequent (tail)

URL1s.

• We add URL2 aggregated counting features and the derived

CTRs as features to both LightGBM rankers. We observe

that the URL2 aggregated counting features are considerably

denser than the URL1-URL2 aggregated counting features

and help significantly with generalization.

• Initially, our deployed LightGBM rankers used label regres-

sion (MSE loss) as the learning objective. Shifting to a pair-

wise objective, LambdaRank, led to significant online gains.

LambdaRank is a pairwise objective: for each impression,

for the URL1, we consider a pair of the shown candidate

URL2s. Specifically, in LambdaRank, the pairwise objective

for a URL1 and candidates URL2i and URL2j is given as:

log

(
1 + exp

−𝜎 (𝑠𝑖−𝑠 𝑗 )
) ��Δ𝑁𝐷𝐶𝐺𝑖 𝑗 ��

Where:

– 𝑠𝑖 and 𝑠 𝑗 are the model scores for URL2i and URL2j, re-

spectively.

– Δ𝑁𝐷𝐶𝐺𝑖 𝑗 represents the NDCG difference that results

from swapping the ranking of the pair. The relevance

labels used for calculating the Δ𝑁𝐷𝐶𝐺𝑖 𝑗 are the utility
labels for the URL2s computed as a function of their dwell

times.

We provide ablations for these techniques for the Stage 2 Light-

GBM ranker in Table 3. We evaluate the techniques with the Click-

NDCG inner loop metric described in Section 2.2. The final produc-

tionized Stage 2 LightGBM Ranker (last row of Table 3) showed a

0.83% relative CTR gain on a 1 week online A/B experiment.

Technique ClickNDCG@3 Delta

Traffic Instance Weights +0.02

Previous row + URL2 aggregated counting features +0.13

Previous row + update objective to LambdaRank +0.18

Table 3: Ablation results for techniques used in the Stage 2
LightGBM ranker on the offline test set

Figure 6: Utility label for LambdaRank: piecewise function
plot

4.3 RecoLM: A Multiobjective Cross-Encoder
Model

MT RecoLM is a multi-task MiniLM-based cross-encoder model

designed for ranking URL1-URL2 pairs. We cover several aspects

of the model development in this section: the teacher model pre-

training, teacher fine-tuning, and knowledge distillation.

Teacher Pretraining andDomainAdaptation:Weuse TuLRv3

[4] as our base model, pretraining it with billions of Bing search

logs. We apply Contextual Masked Language Modeling along with

pairwise objectives for dwell time and URL position prediction. The

input during pre-training is <Query, URL, Title, Snippet>, adapting

the model for web search applications across Bing teams.

Click Teacher: We build on the pre-trained model by adding a

click prediction head on the [CLS] token. We collect several months

of production logs and derive the unique (URL1, URL2_clicked and

URL2_not_clicked) triplets, amounting to over 1 billion training

triplets. The input to the model during finetuning is of the form

<URL1, Title1, Snippet1, URL2, Title2, Snippet2>. Training data

consists of triplets of clicked and non-clicked URLs, and we fine-

tune on approximately 1 billion triplets. Table 5 summarizes the

evolution of our click teacher model. For first iteration of the click

teacher, we bucketized the 60-day CTR into 5 classes and trained the

model with Cross-Entropy loss, a pointwise objective. On changing

the objective to softmax pairwise loss, we observed a significant

gain of +1.45 points on our offline ClickNDCG@3 metric as shown

in Table 5.

Pairwise Softmax Loss = log

(
𝑒
𝑠
Url1_Url2

+

𝑒
𝑠
Url1_Url2

+ + 𝑒𝑠Url1_Url2−
)

− log

(
𝑒𝑠Url1_Url2−

𝑒
𝑠
Url1_Url2

+ + 𝑒𝑠Url1_Url2−
)

Where:

– 𝑠
Url1_Url2

+ is the model score for the positive (clicked) URL2.

– 𝑠
Url1_Url2

− is the model score for the negative (not-clicked)

URL2.
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During fine-tuning with pairwise loss, we further introduced loss

importanceweights for each (URL1, URL2_clicked, URL2_not_clicked)

training instance. The importance weight for each instance is cal-

culated as the logarithm of the frequency 𝑓 of the triplet in the

collected training logs. Using a logarithmic function rather than a

linear weight helps mitigate the impact of highly frequent triplets

corresponding to extremely popular head URL1s, thus preventing

them from disproportionately influencing training. Introducing

importance weighting yields another +0.5 gain in ClickNDCG@3.

Recommendation Quality Teacher: The quality teacher, built

on top of the same pretrained model, includes a classification head

with 5 logits for the recommendation quality classes 0 to 4. We

obtain 80 million URL1-URL2 recommendation quality scores (0

to 4) with GPT-4 Turbo, using the pointwise prompt discussed in

Section 2.1. For fine-tuning, we use cross-entropy loss, rounding

the quality scores to the nearest integer.

4.4 MT RecoLM: Knowledge Distillation
The RecoLM student model was originally a single objective model

with a single logit click prediction head. It evolved to become a

multi-objective model with the addition of a 5 logit recommenda-

tion quality classification head. To meet latency requirements for

online serving, we distill a 6-layer MiniLM-based cross-encoder,

MT RecoLM, from a significantly larger teacher model. We use a

dataset of 1 billion (URL1, URL2) pairs with click and quality teacher

labels for distillation. The student model features two heads: one

for pairwise click prediction and one for quality classification, both

trained with MSE loss and we tune the loss weights for the best

joint performance. We also show through the experiment summa-

rized in Table 4, that distillation outperforms direct fine-tuning of

the previous version of RecoLM (by adding a quality head to it)

with SCE loss by over 8 points in RecoDCG@5, demonstrating its

effectiveness for multi-objective ranking models.

Note: In Table 4, RecoDCG@5 is reported by ranking webpages

by the quality head scores of the MT RecoLM student model. Both

approaches are compared against the baseline single objective stu-

dent model (optimized solely for clicks) performance.

Model RecoDCG@5

Teacher Distillation (MSE Loss) +9.76

Direct Fine-tuning (SCE Loss) +1.44

Table 4: MT RecoLM student model: Teacher distillation ver-
sus fine-tuning

4.5 Linear Combination
The LightGBM ranker score and the multi-task student model’s

quality head scores are first Z-score normalized using the mean

and standard deviation calculated on a fixed validation set that rep-

resents production traffic. We deploy a linear combination between

the stage 2 LightGBM ranker score and the quality head score as:

(1 − 𝜆) ·
lgbm_score − 𝜇

lgbm_score

𝜎
lgbm_score

+ 𝜆 ·
cls_score − 𝜇

cls_score

𝜎
cls_score

Where:

– 𝜆: quality weight

– cls_score: recommendation quality head score

– lgbm_score: Stage 2 LightGBM ranker score

The linear combination provides a controllable and interpretable

mechanism to balance the trade-off between quality improvement

(RecoDCG) and online click metrics, using the weight 𝜆.

Figure 7: Evolution of the Triggering Model: Clicks Blocked
Proportion vs. Impressions Blocked Proportion

5 Triggering Model
Historically, for all URL1s and impressions we’ve always shown

5 recommendations in the inline scenario. The motivation behind

the triggering model is to improve the user experience on Bing in

situations where showing all 5 WebReco recommendations may be

ineffective. This includes navigational queries, where user intent

is highly specific, or situations where the quality of our recom-

mendations falls short and do not engage users. For example, with

queries such as ’definition of irrelevant’ or ’YouTube’, the primary

search result typically meets user needs, which makes showing

5 WebReco recommendations an inefficient use of space on the

Bing search result page. The trigger model aims to boost online

engagement metrics (PTR and CTR) and enhance the overall Bing

experience by dynamically adjusting the number of recommenda-

tions shown—selecting from {3, 4, 5, 6}—based on the specific URL1.

The simple underlying intuition is to decrease the recommendation

count if the historical CTR when showing recommendations for a

URL1 is low and to increase the count if the historical URL1 CTR

is high. We impose the constraint of keeping the average number

of recommendations shown by our production system constant.

This is because we do not wish to over-trigger recommendations

to achieve PTR and CTR gains as user experience critical and there

are other features and answer blocks on the Bing results page that

provide value. Instead, we want to more optimally allocate recom-

mendation counts to URL1s who would most benefit from it, by

reducing the recommendation counts allocated to URL1s who have

historically had low engagement.

5.0.1 Offline Threshold Tuning: We developed an offline threshold-

tuning pipeline using one week of production logs as the evaluation
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Version Type Training Data Label Type Objective ClickNDCG@3

V1 Click URL1-URL2 Counting Features Bucketized 60 day CTR Cross-Entropy Loss 61.49

V2 Click Aggregated Production logs Dwell times Pairwise Softmax Loss 62.94

V3 Click Aggregated Production logs Dwell times Pairwise Softmax Loss with Importance Weighting 63.44

Table 5: Evolution of the RecoLM Click Teacher model

set. Given a target recommendation count distribution and a scor-

ing model, the pipeline determines the score threshold buckets for

each recommendation count ∈ {3, 4, 5, 6} by creating a cumulative

distribution of the total URL1 impressions from the 1 week evalu-

ation set. We determine precise thresholds on the score, with the

aim of achieving the target recommendation distribution for the

recommendation counts ∈ {3, 4, 5, 6}. We apply these thresholds on

top of the rule to go from the scoring model’s score to a predicted

recommendation count for each impression’s URL1.

5.0.2 Rules-based Triggering Models: The first version of the trig-

gering model was rule-based and given a target recommendation

count distribution, we use the aforementioned threshold-tuning

pipeline to find the required thresholds on the 7-day rolling URL1

CTR. Naturally, however, there is greater confidence in the 7-day

CTR for a URL1 with a high impression count compared to one

with a low impression count.

To account for this, we compute the Wilson Confidence Interval

upper bound adjusted URL1 7-day CTR shown in Equation 5.0.2,

at the significance level 95%. This provides a confidence interval

about the CTR and is scaled based on the 7-day URL1 impression

count. The upper and lower Wilson bounds [2] are detailed below.

Upper Bound =

𝑝 +
𝑧2
1−𝛼/2
2𝑛 + 𝑧

1−𝛼/2

√︂
𝑝 (1−𝑝 )
𝑛 +

𝑧2
1−𝛼/2
4𝑛2

1 +
𝑧2
1−𝛼/2
𝑛

Lower Bound =

𝑝 +
𝑧2
𝛼/2
2𝑛 + 𝑧𝛼/2

√︂
𝑝 (1−𝑝 )
𝑛 +

𝑧2
𝛼/2
4𝑛2

1 +
𝑧2
𝛼/2
𝑛

.

Where:

– 𝑝 = URL1 CTR

– 𝑛 = URL1 Impression Count

– 𝑧 = Test statistic for 𝑝

– 𝛼 = Significance level, 95%

5.0.3 Comparing Triggering Model Strategies: We collect 1-day

of production logs collected after the training data window. To

visualize and compare the effectiveness of different triggering rules

and models in a 2-D plot, we assume a binary decision based on a

threshold 𝑡 on whether to block URL1 from triggering. We then plot

the proportion of blocked clicks against the proportion of blocked

impressions, varying the blocking threshold 𝑡 . A more effective

model minimizes impressions while retaining the highest possible

number of clicks, resulting in a lower curve. In Figure 7, the rule

that uses the Wilson upper bound adjusted 7-day CTR performs

significantly better than the baseline rule on the raw 7-day URL1

CTR. This is corroborated by strong CTR and PTR gains in an online

A/B experiment comparing these two rules.

5.0.4 Target Recommendation Count Distribution: We want the

triggering model to respect a target recommendation count distri-

bution such that the average number of recommendations shown

to users remains the same compared to the production baseline

(control), about 4.9 recommendations per impression. We eventu-

ally choose the following distribution: show 3 recommendations for

21% of URL1s, 4 recommendations for 20%, 5 recommendations for

20%, and 6 recommendations for 39% of URL1s. These percentages

are weighted by the URL1 7-day impression count.

5.0.5 LightGBM-based Triggering Models: The next iteration of

the triggering model, referred to as the "URL1 Model" in Figure

7, advanced beyond the rule-based approach by incorporating a

LightGBM model. This model leverages the 7-day URL1 aggregated

counting features, along with Wilson upper and lower bound ad-

justed URL1 CTRs for the same window, to predict the future 1-day

Wilson upper bound adjusted URL1 CTR. The model is trained with

a regression objective using Mean Squared Error. The final and our

best-performing model ("URL1-URL2 Concatenated" model) uses

an even richer feature set: it further includes URL1-URL2 counting

features and the predicted Stage 2 LightGBM scores for each of

the top 5 ranked URL2 candidates for the URL1. This "URL1-URL2

Concatenated" model demonstrates the best performance in Figure

7, achieving the best tradeoff between impressions blocked and

clicks lost. This is our final model, demonstrating a relative gain of

2.11% CTR / 1.93 % PTR in online A/B experiments.

The engineering challenge to ship the "URL1-URL2 Concate-

nated" triggering model to production is that the thresholds men-

tioned must be tuned at a regular cadence, since the triggering

model when active will affect the counting features’ distribution.

6 Conclusion
The paper provides an in-depth examination of WebReco, from

candidate generation to ranking. Our work details our end-to-end

production system through an inside look into the real-world chal-

lenges and solutions when building a web-scale recommendation

system. For candidate generation, we share our insights into the de-

velopment of our billion-scale CoClick, collaborative filtering (CF),

dense retrieval, fresh and LLM-powered Q’ recall paths. The paper

details how the ranking models evolved and how the techniques

we introduced improved the ranking system. We also motivate the

triggering model and discuss its evolution. By sharing our system

architecture and the design choices made along the way, we aim to

offer actionable insights and strategies for practitioners developing

scalable recommendation systems that align with their product

goals.
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A Appendix

GPT-4 Generated Queries

1- Florida Lottery education and community initiatives

2-Florida Lottery promotions and events

3- Florida Lottery winners stories and testimonials

4- How to play and win the Florida Lottery games

Mistral-7B Generated Queries

1- Florida Lottery games and prizes

2- Florida Lottery promotions and news

3- Florida Lottery winners and stories

4- How to play and win the Florida Lottery

Table 6: GPT-4 and Mistral-7B generated queries for Florida’s
lottery website (www.flalottery.com)
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