
Optimizing Explorations in Largescale Recommendations System
with Information Sharing

Zhihao Huang
Zhihao.Huang@walmart.com

Walmart Global Tech
Sunnyvale, CA, USA

Ankur Bhardwaj
Ankur.Bhardwaj@walmart.com

Walmart Global Tech
Sunnyvale, CA, USA

Abdus Khan
Abdus.Khan@walmart.com

Walmart Global Tech
Sunnyvale, CA, USA

Afroza Ali
Afroza.Ali@walmart.com
Walmart Global Tech
Sunnyvale, CA, USA

Abstract
Large scale recommendation systems rely on robust exploration-
exploitation strategies to mitigate the cold start problem caused
when new items are added or as customer preferences change. The
lack of information on fresh (and new) items needs to be filled in
order to surface them to their relevant customer base. However,
these systems are often faced with a very large pool of candidates to
choose from, making the exploration process quite inefficient. For-
tunately, information sharing among similar arms can immensely
help in reducing the exploration cost. To address this, we built an
online learning system that systematically clusters popular and
new products using structures such as taxonomy and product inter-
action features along with high dimensional semantic embedding,
enabling information sharing among eligible popular items and
cold/new items. We present in this paper a production ready sys-
tem (ready for A/B testing) with thorough offline simulation tests
that highlights the benefit of sharing information to optimize ex-
ploration and improve overall reward metrics.
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1 Introduction
Recommendation systems have traditionally been dependent on
customer interaction data for training relevant recommendations.
This leads to heavily biased promotion of certain high confidence
items on the recommendation platforms, while a large number of
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other items remainminimally exposed. This closed feedback loop [7,
25] results in a small number of items becoming extremely popular,
while the vast majority have very few interactions.

With the scale of fresh content uploads on social media plat-
forms or new products getting added into the online marketplaces,
recommendation systems have moved to deploy explore-exploit
based on multi-arm bandit framework to quickly explore and sur-
face promising new variants across its large and diverse customer
base. In the classic formulation of the multi-arm bandit problem,
the goal of the agent is to systematically choose among a set of
arms or actions to maximize a desired reward. This objective aims
to balance between exploration (of new item) and exploitation (of
high potential items). In the multi-armed bandit (MAB) problem,
the model aims to maximize the cumulative reward by sequentially
choosing actions (pulling arms) from a set of options. Each action
has an associated reward distribution, and the goal is to identify the
action with the highest expected reward. On the other hand, pure
exploration solely focuses on identifying the best arm as quickly
as possible, rather than maximizing the cumulative reward. This
problem is often referred to as the "best-arm identification" problem
and has recently gotten attention in research [1–3, 7, 8, 10]. Pure
exploration in a MAB problem can be more costly in terms of the
number of trials required compared to maximizing the cumulative
expected reward.

However, modern day recommendation systems are challenged
with tremendously large number of products (several hundreds
of millions) where exploring each of them could be intractable.
The exploration is both cost inefficient and time consuming and in
certain cases the algorithm may never fully leverage its learnings.
Further, non-stationarity caused due to seasonality and changes
in customer preference prolonge exploration, diminishing its long-
term value.[4, 9]

Fortunately, the online learning system can leverage the simi-
larity among the products to share the reward information from
popular to new ones, thus helping to optimize the exploration phase
across a very vast pool of candidates.

Our Contributions: We consider the problem of optimizing large-
scale exploration in recommendation system using multi-arm ban-
dit framework with information sharing. 1)We designed an online
learning system that uses product features to form clusters based on
similarity metrics. 2) We then define the parameter update process
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within the clusters defining the eligibility criteria on the partici-
pants who can share and receive reward information. Through de-
tailed experiments on two different datasets, we show that the share
learning algorithm outperforms the traditional Thompson Sampling
model. Information sharing among the right arms contribute to the
model’s faster convergence and robustness over non-stationary.

2 Problem Setup
In the following we introduce the problem setup that utilize the con-
ventional Thompson’s Sampling Algorithm (TS) for click through
rate (CTR) model on a e-commerce item ranking use case.

Click Through Rate (CTR) Model. We consider 𝑛-arm bandit
problem for web item ranking, where 𝑎𝑖 represent each item as an
arm with 𝑖 ∈ {1, 2, ..., 𝑛}. For each of the item 𝑎𝑖 , the probability of
a click given an impression is

P(𝐶𝑖 = 1) = 𝑝𝑖

Thompson’s Sampling Algorithm (TS) for CTR Model. Fol-
lowing the conventional Thompson’s Sampling Algorithm (TS)
setup, we use a Bayesian approach to model the click probabil-
ity of each item. For each arm 𝑎𝑖 , it’s click probability density
distribution follows the Bayesian posterior as a product result of
empirical distribution and prior distribution. Under the CTR model,
each impression can be considered as a Bernoulli trail with success
probability of 𝑝𝑖 . Therefore, the likelihood of multiple clicks 𝑠 and
no-click-impression 𝑓 modelled with a binomial distribution is

P(𝑋 |𝑝𝑖 ) =
(
𝑠 + 𝑓

𝑠

)
𝑝𝑠𝑖 (1 − 𝑝𝑖 ) 𝑓 .

By utilizing the conjugal properties of beta distribution with bino-
mial distribution, we set the prior of 𝑝𝑖 as Beta(𝛼, 𝛽), and finally
the posterior distribution of 𝑝𝑖 is

P(𝑝𝑖 |𝑋 ) = Beta(𝛼 + 𝑠, 𝛽 + 𝑓 ) := Beta(𝛼, 𝛽), (1)

where we denote 𝛼 := 𝛼 + 𝑠 and 𝛽 := 𝛽 + 𝑓 for simplicity.
Ranking Model. We consider the ranking of the items deter-

mined by the above TS approach. Over the time 𝑡 ∈ {1, 2, ...,𝑇 }, the
TS algorithm samples the click probabilities 𝑝 (𝑡 )

𝑖
as

𝑝
(𝑡 )
𝑖

∼ Beta(𝛼 (𝑡 )
𝑖

, 𝛽
(𝑡 )
𝑖

) (2)

where Beta(𝛼 (𝑡 )
𝑖

, 𝛽
(𝑡 )
𝑖

) represents the posterior distribution of 𝑝𝑖
at time 𝑡 . The ranking of the items 𝑎 (𝑡 )

𝑖
= A (𝑡 ) ∈ {1, 2, ..., 𝑛} is

determined by 𝑝 (𝑡 )
𝑖

. Therefore, the ranking model based on TS for
CTR is an accumulative process of impressions and clicks over time.
On most e-commerce platform, time 𝑡 is a short period of time that
a series of impressions 𝑠 + 𝑓 and clicks 𝑠 are observed. The posterior
distribution can be updated seamlessly by adding impressions and
clicks to the corresponding parameters.

It is obvious that the conventional TS ranking logic is purely
determined by the accumulation of impressions and clicks obser-
vations. The arm level context is not utilize at all. We denote that
for each arm 𝑎𝑖 , contextual information 𝐹𝑖 = (𝑆𝐹𝑖 ,𝑈 𝐹𝑖 ) is available
where 𝑆𝐹𝑖 represents structured contextual features and 𝑈𝐹𝑖 rep-
resents unstructured contextual features. In the next section, we
shall discuss how the contextual feature may be used in advancing
the TS for CTR model.

3 Algorithm
We introduce a two-stage bandit algorithm on top of the conven-
tional TS for CTR model. The first stage is the creation of arm
similarity measurement based on arm context. The second stage is
updating parameters with the created similarity measurements.

3.1 Similarity Measurement
The purpose of the similarity measurement is to determine how
two arms are alike with each other. A similarity score 𝑆𝑖, 𝑗 ∈ (0, 1) is
calculated between item 𝑎𝑖 and 𝑎 𝑗 . Particularly, we define 𝑆𝑖,𝑖 = 1.
However, for some of the items that are completely not related, the
similarity score 𝑆𝑖, 𝑗 may still be larger than 0, which may result in
some unwanted information sharing in later sections. To prevent
this, a more sparse similarity measurement can resolve this issue.

Clustering based on structured features: In case of large
number of arms, calculating similarity between all arms is com-
putationally expensive and often includes comparisons between
unrelated arms. To facilitate parameter sharing between relevant
popular (hot) and less popular (cold) items, we first employ DB-
SCAN clustering based on structured features [6]. With this ap-
proach we ensure that each cluster contains a minimum number
of hot items, enabling parameter sharing within the cluster. The
structured features includes numerical attributes like item revenue,
item price, average rating as well as categorical attributes such as
brand, product category, and product type.

Semantic Similarity based on textual features: In this step,
we utilize textual features to generate BERT embeddings [5] for
each arm. In our use case for e-commerce items, an item title and
description based semantic embedding 𝐸𝑖 ∈ R𝑘 is created.

A similarity matrix is created based on the above steps, where
𝑆𝑖, 𝑗 can be calculated with a cosine similarity as

𝑆𝑖, 𝑗 = 𝐼(𝑠𝑎𝑚𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ) (𝑖, 𝑗) ∗
𝐸𝑖 · 𝐸 𝑗

∥𝐸𝑖 ∥∥𝐸 𝑗 ∥
, (3)

where 𝐼(𝑠𝑎𝑚𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ) (𝑖, 𝑗) represents the indicator function that the
items 𝑖 and 𝑗 come from the same cluster.

3.2 Information Sharing and Parameter Update
When sharing the information between items, there are a few crite-
ria that we want to follow, particularly we want to honor the extend
of exploration of each item while updating the point estimate of
the click probabilities. Specifically,

• Differentiate hot v.s. cold items. For hot items, enough
exploration has been given, and the exploration result should
be honored. Therefore, the information sharing happens
only for hot items to cold items, where a threshold is used
to differentiate cold and hot items.

• Preserve the extend of exploration. Although cold items
receive information from hot item, the level of exploration
should stays unchanged. We only want to update the point
estimate of 𝑝𝑖 of the item.

• Adjust information weight. Well explored items should
play more important role in sharing the information com-
pared to less explored items.
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Figure 1: End-to-end design scheme of Thompson’s Sampling with Information Sharing that utilizes structured-features-based
clustering and semantic-feature-based embedding.

Considering the above logic, we propose the following approach
to update the 𝛼 and 𝛽 parameters of the eligible items, where the
eligibility is determined by a hyperparameter ζ ∈ N+.

For each item 𝑎𝑖 at time 𝑡 , we define the mean and variance of
its beta distribution as

𝜇
(𝑡 )
𝑖

=
𝛼
(𝑡 )
𝑖

𝛼
(𝑡 )
𝑖

+ 𝛽
(𝑡 )
𝑖

(4)

𝜎
(𝑡 )
𝑖

=
𝛼
(𝑡 )
𝑖

𝛽
(𝑡 )
𝑖

(𝛼 (𝑡 )
𝑖

+ 𝛽
(𝑡 )
𝑖

) (1 + 𝛼
(𝑡 )
𝑖

+ 𝛽
(𝑡 )
𝑖

)
(4)

For cold or somewhat-cold item 𝑎𝑖 that satisfy 𝛼
(𝑡 )
𝑖

+ 𝛽
(𝑡 )
𝑖

< ζ, a
weighted average across the mean 𝜇𝑡 for all eligible items under
the same cluster is introduced to update the parameters.

𝛼
(𝑡 )′
𝑖

=

∑𝑛
𝑗=1 𝑆𝑖, 𝑗 ∗ 𝐼(𝑠𝑎𝑚𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ) (𝑖, 𝑗) ∗

𝜇
(𝑡 )
𝑗

𝜎
(𝑡 )
𝑗∑𝑛

𝑗=1 𝑆𝑖, 𝑗 ∗ 𝐼(𝑠𝑎𝑚𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ) (𝑖, 𝑗) ∗ 1
𝜎
(𝑡 )
𝑗

× (𝛼 (𝑡 )
𝑖

+ 𝛽
(𝑡 )
𝑖

) (5)

𝛽
(𝑡 )′
𝑖

= 𝛼
(𝑡 )
𝑖

+ 𝛽
(𝑡 )
𝑖

− 𝛼
(𝑡 )′
𝑖

(5)

3.3 Overall Algorithm
With the above steps and calculations, we formula the overall algo-
rithm as Algorithm 1 and diagram of the system as Picture 1.

4 Experiment
Implementation. We conduct simulations to evaluate the perfor-
mance of the algorithm on various metrics. Given the dynamic
nature of online learning, we simulate the learning process when
the true rewards distribution of each arm is available but unknown
to the algorithm. The algorithm then learns through explore-exploit
process. After each time when the algorithm refreshes, impres-
sions are allocated based on the ranking of arms given by the algo-
rithm. Finally, the simulation process generate rewards based on the
true rewards distribution. Two simulations are done with synthetic

Algorithm 1 Thompson’s Sampling with Information Sharing
Require: ζ, DB-SCAN Min Size

for Each session 𝑡 where 𝑡 ∈ {1, 2, ..., 𝑛} do
Perform DM-SCAN on 𝑆𝐹 and obtain 𝐼𝑠𝑎𝑚𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟

for Each arm 𝑎
(𝑡 )
𝑖

where 𝑖 ∈ {1, 2, ...,𝑚} do
Calculate BERT embedding for each arm 𝐸𝑖

Calculate P(𝑝𝑖 |𝑋 ) = Beta(𝛼 (𝑡 )
𝑖

, 𝛽
(𝑡 )
𝑖

)
for Each arm 𝑎

(𝑡 )
𝑗

where 𝑗 ∈ {1, 2, ...,𝑚} do
Calculate arm similarity 𝑆𝑖, 𝑗 with (3)

end for
if 𝛼 (𝑡 )

𝑖
+ 𝛽

(𝑡 )
𝑖

< ζ then
Calculate 𝜇 (𝑡 )

𝑖
and 𝜎 (𝑡 )

𝑖
with (4)

Update 𝛼 (𝑡 )
𝑖

and 𝛽
(𝑡 )
𝑖

with (5)
end if

end for
Generate ranking based on sampling with (2)

end for

dataset and E-commerce dataset for item recall set generation and
re-rank task. The clustering steps are skipped for simplicity.

We also deploy the full algorithm in real-world e-commerce
platform for the same task where a much large item pool exists
with strong non-stationary performance. In particular, we target
the cold items, which are usually introduced on a regularly for
promotions purposes, that have no or very little exposure. We
collect the performance signals before and after the deployment.

Datasets. The datasets used for simulations consist of multiple
arms with known rewards distributions, where a binomial distri-
bution is usually used in the web click model. For comparison
purposes, we generate a synthetic dataset that is comparable to the
real-world dataset.

• Synthetic dataset. The mean of the rewards are generated
with a uniform distribution within a reasonable range we
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Table 1: Statistics of datasets used for experiments.

Dataset Arms Total impression, Model Refresh Frequency and Recall Set Size Rewards and Similarity

Synthetic Data 377 1 Million, per 500 impressions, 25 Synthetic
E-commerce Data 1 377 1 Million, per 500 impressions, 25 Real-world
E-commerce Data 2 148,824 10 Million, Dynamic, 2500 Real-world

Figure 2: X-axis represents the item quantiles ranked by allocated
impressions. Traditional TS requires long exploration phases, result-
ing randomly allocated impressions.

observe in e-commerce. The similarity measurement is gen-
erated correlated to the mean rewards.

• E-commerce Dataset 1. The arms are actual items in one of
the E-commerce Deals Page. We limit the items in Electronic
Category with certain amount of impressions only to skip
the clustering and ensure the accuracy of the true rewards
distribution. The similarity measurement is created based
on item semantic cosine similarity.

• E-commerce Dataset 2. The arms are actual items in multi-
ple E-commerce Deals Pages. We consider all available items.
The similarity measurement is created based on item seman-
tic cosine similarity. The model refresh every few hours with
dynamic real world impressions.

The detailed statistics of the datasets are available in Table 1.
Baseline.We compare the performance of the algorithm with

traditional TS where no information sharing is conducted.
Evaluation. The simulation is setup with the same total impres-

sions to be allocated and model refresh frequency for comparison
purposes. We look at the total generated clicks at 250, 500, 1000
and 2000 model refreshes. The performance of TS with Information
Sharing is able to out perform the traditional TS on multiple simula-
tion trials. We observe faster converges to the best performing arms,
and better optimization results. Particularly in the initial phase from
the cold start, we observe an average of 13% improvements in the
rewards, where the maximum of improvements is observed.

In the real-world deployment where a significantly larger item
pool exists, the share learning TS outperforms the traditional TS.We
observe that the items with the most impressions have the highest
CTRs. As a result of the information sharing, the algorithm is able

Figure 3: With share learning, the algorithm allocates more than
70% of the total impressions to 10% of the items, where the highest
CTRs are observed.

Table 2: Click Improvements by Model Refresh Numbers

Dataset @250 @500 @2000 Overall

Synthetic Data 10.48% 6.77% 1.76% 4.42%
E-commerce Data 1 13.09% 7.43% 2.42% 7.81%
E-commerce Data 2 - - - 88.03%

to skip most of the long and costly exploration phase and proceed
to exploitation phase much more efficiently than the traditional
approach. There is a 88% improvement in the overall CTR as most
of the impression are allocated to well-performing items.

5 Conclusions
This work provides a practical solution for leveraging arm con-
textual features to share information from well explored arms to
under explored arms for the large scale recommendation system.
The key is creating an arm-to-arm similarity measurement. By in-
troducing structured features and semantic embedding of arms, the
share learning model updates the parameters based on the arm
similarity and arm explore-exploit states for under explored arms
while preserving the framework of traditional approaches. Through
experiments on two datasets, we show that the share learning algo-
rithm outperforms the traditional TS model. Information sharing
contributes to the model’s faster convergence and robustness over
non-stationary. Importantly, information sharing is built on top of
the traditional TS framework, making it a scalable solution with
great flexibility.
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