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ABSTRACT
The evolution of large vision-language models (LVLMs) has shed
light on the development of many fields, particularly for multimodal
recommendation. While LVLMs offer an integrated understanding
of textual and visual information of items from user interactions,
their deployment in this domain remains limited due to inher-
ent complexities. First, LVLMs are trained from enormous general
datasets and lack knowledge of personalized user preferences. Sec-
ond, LVLMs struggle with multiple image processing, especially
with discrete, noisy, and redundant images in recommendation
scenarios. To address these issues, we introduce a new reasoning
strategy called Visual-Summary Thought (VST) for Multimodal
Recommendation. This approach begins by prompting LVLMs to
generate textual summaries of item images, which serve as contex-
tual information. These summaries are then combined with item
titles to enhance the representation of sequential interactions and
improve the ranking of candidates. Our experiments, conducted
across four datasets using three different LVLMs: GPT4-V, LLaVA-
7b, and LLaVA-13b validate the effectiveness of VST.

KEYWORDS
Large Vision-Language Models, Multimodal Recommendation, Rea-
soning Strategy

1 INTRODUCTION
To address the cold-start issues that recommender systems lack
sufficient records of new items/users, multimodal recommender
systems (MMRSs) [5, 8, 14, 27, 29, 35, 37, 41, 42] are proposed by in-
volving the complementary content of items from multiple perspec-
tives, e.g., textual description and visual illustration, thus enriching
the recommender system’s knowledge. However, the knowledge of
MMRSs is primarily learned from scratch using a limited user-item
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Figure 1: The performance of GPT4-V on four representative
Amazon datasets with title-only and title-image concatena-
tion inputs.

interaction dataset that is often biased and noisy [2, 15, 32, 40]. Ad-
ditionally, the product image provided by the seller contains critical
marketing highlights that attract buyers, e.g., the game’s duration
and thematic ambiance, elements that traditional embedding-based
MMRSs may struggle to effectively capture. Moreover, traditional
MMRSs encounter challenges in fusing multimodal knowledge,
where inefficient integration can further degrade the recommender
system’s performance [11, 13, 36, 39].

Meanwhile, the remarkable success of large vision-language
models (LVLMs) [7, 12, 17, 25, 28, 33, 34, 43] offers encouraging
solutions to the above issues encountered by traditional MMRSs.
LVLMs are proficient in comprehending both textual and visual
information about an item, owing to their training on enormous
datasets. Their ability to distill and adapt item information across
modalities Into natural language space exhibits an opportunity for
effective knowledge fusion. Despite these strengths, the incorpora-
tion of pretrained LVLMs into MMRSs remains an under-explored
area. Two possible obstacles may hinder the widespread adoption
of LVLMs in MMRSs:

First, LVLMs are trained from vast general knowledge and, as
such, lack domain-specific knowledge for understanding user pref-
erences revealed through their interactions. This gap results in
the under-exploration of LVLMs’ capacity in recommendation sce-
narios. To bridge this gap, it is essential to integrate additional
knowledge to inform LVLMs in the context necessary for making
appropriate recommendations. This approach, however, introduces
the second challenge: LVLMs’ inefficiency in processing multiple
images. Although models like GPT4-V have been evaluated in video
understanding scenarios to examine their capacity in capturing dy-
namic content across frames [1, 16, 20, 22, 28, 31, 33], the scenario
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with MMRSs involves handling multiple, discrete, and noisy images.
This complexity can pose a significant challenge even from a human
perspective, making it difficult to extract meaningful knowledge
from such diverse interactions. Our preliminary experiments as
shown in Figure 1 indicate this issue, showing that a simple con-
catenation of multiple images with item titles performs worse than
methods relying solely on item titles for recommendations even
with powerful GPT4-V. Furthermore, current reasoning algorithms,
e.g., in-context learning (ICL) [3, 9, 18, 19, 30] and chain-of-thought
(CoT) [10, 21, 23, 26, 38], are primarily designed for NLP tasks
ignoring visual modality. However, the principal challenge in multi-
modal recommendation is how to effectively leverage image-based
knowledge and integrate it into the recommendation process. Thus,
effective LVLM-based MMRS requires the design of specific prompt-
ing strategies that can utilize their visual comprehension strength
without caving to the complexities associated with processing mul-
tiple images simultaneously.

Accordingly, we propose a novel Visual-Summary Thought
(VST) reasoning principle of LVLMs for MMRSs. Our approach
includes two primary components: First, we utilize user historical
interactions as contextual data for the LVLMs’ personalized recom-
mendations. This involves using sequences of both item titles and
images as inputs to the LVLMs. Second, to overcome the shortage
of handling multiple images, we prompt the LVLMs with one static
image to obtain a corresponding textual summary. Then, we con-
struct user history sequences by substituting the images with their
textual comprehensions one by one, serving as an intermediate rep-
resentation for LVLMs during the reasoning phase. This strategy
allows for the recommendation based on a more manageable com-
prehension of user preferences, transitioning from the complex and
noisy image sequences to a simpler task of understanding visual-
summary enhanced preference dynamics. To validate the efficacy of
our proposed reasoning algorithm, we conduct experiments using
GPT4-V, LLaVA-7b, and LLaVA-13b as reasoning backbones. We
observe consistent improvements over other existing reasoning
strategies, such as concatenation, ICL, and CoT. Our contributions
can be summarized as follows:

• To the best of our knowledge, this is the first attempt to
investigate the reasoning strategies for LVLMs inmultimodal
recommendation scenarios.

• We introduce a novel Visual-Summary Thought (VST) rea-
soning strategy, specifically designed for the multimodal rec-
ommendation context, to harness the proficiency of LVLMs’
visual understanding and remedy their deficiency in han-
dling multiple images simultaneously.

• We conduct comprehensive experiments to evaluate VST, uti-
lizing both API-based LVLMs like GPT4-V, and open-source
models such as LLaVA-7b and LLaVA-13b. The consistent
improvements observed across these models demonstrate
the effectiveness of VST for LVLM-based MMRSs.

2 METHODOLOGY
2.1 Problem definition
In this paper, we follow the problem settings in [6, 24] that use the
pretrained LVLMs as reranker to make recommendations to user 𝑢
via reranking the given 𝑛 candidate item titles 𝑣 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}.

For each user, we have their historical interactions, which is the se-
quence of title and image pair of items:𝑢 = {(𝑡1, 𝑖1), (𝑡2, 𝑖2), . . . , (𝑡𝑚, 𝑖𝑚)}.

2.2 Preliminary
LVLMs exhibit limitations in handling multiple images. We eval-

uated the LVLMs’ ability to handle multimodal inputs by concate-
nating the item titles and images of user histories. Surprisingly,
leveraging complementary visual information led to poorer results
compared to only using item titles as shown in Figure 1. (An exam-
ple can be found in section 3.4.) This underscores a critical insight:
adding more information to the LVLMs’ prompt context without a
thoughtful design can lead to confusion, especially with discrete
and noisy images full of redundancy. To address this challenge, we
introduce a novel visual-summary thought of prompting strategy
(VST) as shown in Figure 2.

2.3 Visual-Summary Generation
Existing LVLMs, e.g., GPT4-V and LLaVA, primarily focus on static
image understanding scenarios, where LVLMs generate textual
descriptions of a given image. However, this paradigm is inef-
ficient for handling multiple images [? ]. Existing strategies in-
clude concatenating images for LVLM reasoning [? ], or adapting
LVLMs to video comprehension scenarios via finetuning on video
datasets [17, 20, 25, 34]. Yet, neither approach is suitable for the
unique demands of MMRSs, where the image sequence of a user
history is discrete and noisy, lacking the continuous nature of video
frames and making sequential correlations difficult to discern. To
deal with these issues, we propose leveraging LVLMs’ strengths
in temporal understanding within natural language modality and
their capacity for static image interpretation. Instead of process-
ing a sequence of images, we focus on distilling critical marketing
highlights from individual image. The prompt can be formalized as:
𝑠𝑖 = 𝑠𝑢𝑚𝑎𝑟𝑦 (𝑖) ="What’s in this image?" For each item, we use one
image and get the summarization of each image independently. In
this way, we can not only obtain marketing highlights of items via
distilling image comprehension from LVLMs but also simplify the
temporal user preference understanding from the visual modality
to the textual modality, where the LVLMs demonstrate proficiency.

2.4 Visual-Summary Thought for MMRSs
After summarizing each item image, we concat the history item
titles with their visual summary to construct the prompt for query-
ing user preferences among candidates. The prompt is structured in
two parts: the first outlines the user’s purchase history in chrono-
logical order, demonstrated by each item’s title and visual summary.
The second segment directs the LVLMs to rerank the candidates
represented by their titles. An illustrative prompt might be:

"[Here is a chronological list of my purchase history for some prod-
ucts including the title and the description of each product. {(𝑡1, 𝑠𝑖1 ),
. . . , (𝑡𝑚, 𝑠𝑖𝑚 )}][There are |𝑛 | candidate products I am considering to
buy: {𝑣1, . . . , 𝑣𝑛}. Please rank these |𝑛 | candidate products based on
the likelihood that I would like to purchase next most according to the
given purchase history. You cannot generate products that are not in
the given candidate list.]".
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Visual-Summary Generation

"Classic Jenga" game made by 
Hasbro Gaming.
For 6 and older, 1 or more players.  
There's a slogan: "HOW DO YOU 
STACK UP?" relating to both the
stacking nature of the game and 
the competitive aspect of player 
performance.

The image is of the board game "Say 
Anything" packaging.
The box boasts "30 Awards" including 
a "Parents' Choice Fun Stuff" ribbon 
and a "Toy's Top Pick" badge.
For ages 13 and up, suitable for 3-8 
players, as a party game.  
The bottom suggests a party 
atmosphere, fitting for a game that 
likely involves social interaction and 
humor.

The image displays a board game 
named "King of Tokyo: Power Up!" by 
Richard Garfield. 
For 2-6 players, ages 8 and above, 
playtime of around 30 minutes.
Includes the "IELLO" logo, the name of 
the game publisher, and a graphic that 
indicates "Pandakai" character. 
The visual style suggests a fun and 
energetic game, possibly with elements 
of monster combat or city destruction, 
given the title and the imagery. 

The image is of the "Exploding Kittens: Original Edition" card 
game box. 
there's a cartoon of a black kitten with a worried expression—
adds humor and character to the game's concept.
Described as "A CARD GAME for people who are into kittens 
and explosions and laser beams and sometimes goats," 
suggesting quirky and whimsical gameplay. 
For ages 7 and up, 2-5 players, 2 minutes to learn, 15 minutes 
to play, highlighting its accessibility and quick playtime.
There's a badge stating "#1 MOST-BACKED KICKSTARTER 
EVER" which signifies its popularity and success on the 
crowdfunding platform Kickstarter.

Say SomethingClassic Jenga King of Tokyo Exploding Kittens

Reranker

Visual-Summary Thought

Figure 2: Framework of Visual-Summary Thought of LVLMs for Multimodal Recommendation. Text in yellow highlights some
key features obtained through visual-summary generation.

Table 1: Performance comparison of different prompt strategies. Target items are guaranteed to be included in the candidate
sets. We highlight the best and the second-best results.

Dataset Metric GPT4-V LLaVA-7b LLaVA-13b
MM MM-ICL MM-CoT VST MM MM-ICL MM-CoT VST MM MM-ICL MM-CoT VST

Sports

R@5 0.6900 0.6950 0.5750 0.7250 0.1300 0.1900 0.1800 0.3283 0.2250 0.3300 0.2300 0.3750
R@10 0.8600 0.8600 0.8150 0.9000 0.2950 0.3400 0.3250 0.5067 0.3200 0.4850 0.3250 0.6250
R@20 0.8700 0.8650 0.8300 0.9050 0.3100 0.3500 0.3550 0.5117 0.3400 0.5000 0.3450 0.6350
N@5 0.4880 0.5126 0.4186 0.5263 0.0703 0.1138 0.1043 0.1769 0.1395 0.2087 0.1393 0.2244
N@10 0.5435 0.5666 0.4961 0.5834 0.1243 0.1619 0.1506 0.2345 0.1706 0.2598 0.1701 0.3063
N@20 0.5461 0.5678 0.4999 0.5846 0.1281 0.1646 0.1580 0.2357 0.1755 0.2637 0.1752 0.3086

Clothing

R@5 0.6550 0.7100 0.6300 0.6950 0.1400 0.1650 0.1700 0.2800 0.3650 0.3200 0.2550 0.3950
R@10 0.8950 0.9050 0.8150 0.9300 0.2750 0.3100 0.2600 0.3250 0.6700 0.5450 0.4200 0.6200
R@20 0.9000 0.9050 0.8200 0.9350 0.2900 0.3150 0.2600 0.3250 0.6950 0.5450 0.4200 0.6250
N@5 0.4781 0.5580 0.4631 0.5322 0.0851 0.1156 0.1086 0.1875 0.2248 0.2062 0.1554 0.2594
N@10 0.5555 0.6205 0.5238 0.6085 0.1287 0.1633 0.1386 0.2025 0.3234 0.2787 0.2058 0.3329
N@20 0.5569 0.6205 0.5252 0.6098 0.1326 0.1646 0.1386 0.2025 0.3301 0.2787 0.2085 0.3343

Beauty

R@5 0.6300 0.6300 0.5500 0.6200 0.2450 0.1800 0.1450 0.2750 0.2650 0.2900 0.2300 0.3200
R@10 0.8450 0.8700 0.6400 0.9000 0.4050 0.3150 0.1700 0.4000 0.3750 0.4200 0.3200 0.5500
R@20 0.8500 0.8750 0.6500 0.9000 0.4200 0.3200 0.1750 0.4000 0.3850 0.4200 0.3250 0.5600
N@5 0.4503 0.4395 0.3964 0.4536 0.1484 0.1202 0.1006 0.1769 0.1641 0.1928 0.1398 0.2183
N@10 0.5197 0.5183 0.4264 0.5439 0.1996 0.1641 0.1087 0.2179 0.2008 0.2361 0.1692 0.2942
N@20 0.5211 0.5195 0.4290 0.5439 0.2035 0.1655 0.1101 0.2179 0.2033 0.2361 0.1706 0.2970

Toys

R@5 0.5500 0.6450 0.4950 0.6300 0.1450 0.1150 0.1300 0.3000 0.1875 0.3400 0.2600 0.3617
R@10 0.7650 0.7800 0.6950 0.8000 0.2750 0.1450 0.1700 0.3800 0.2550 0.4250 0.3800 0.5150
R@20 0.7750 0.7800 0.7050 0.8000 0.2850 0.1550 0.1850 0.3950 0.2663 0.4350 0.3800 0.5200
N@5 0.4184 0.4789 0.3967 0.4399 0.0857 0.0842 0.0835 0.2035 0.1389 0.2373 0.1832 0.2412
N@10 0.4883 0.5227 0.4349 0.4958 0.1281 0.0941 0.0977 0.2299 0.1614 0.2648 0.2228 0.2919
N@20 0.4911 0.5227 0.4376 0.4958 0.1305 0.0966 0.1015 0.2336 0.1642 0.2672 0.2228 0.2932

3 EXPERIMENTS
In this section, we provide the performance comparison between
the proposed VST and three representative reasoning strategies on
four public datasets, using GPT4-V, LLaVA-7b, and LLaVA-13b as
pretrained LVLMS.

3.1 Experimental Settings
Dataset. In this paper, we adopt the same dataset as in [4] that

uses the Amazon Review datasets for evaluation. Due to the limita-
tion of the inference rate, following the common practice [6], we

Table 2: Statistics of the datasets after sampling.

Datasets #Users #Items #Interactions Sparsity

Sports 200 1750 2333 99.33%
Clothing 200 1291 1362 99.47%
Beauty 200 2024 2797 99.31%
Toys 200 1684 1967 99.42%

only sample 200 users for evaluation. We report the statistics of
such datasets in Table 2.
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Figure 3: Ablation study. Performance of LLaVA-13b with
different prompts on Toys dataset.

Metrics. We adopt Recall@K (R@K) and NDCG@K (N@K) to
evaluate the ranking performance of the LVLMs over candidate
items, which consist of the title of the ground-truth (target) item
and the 9 random sampled items following [6].

Implementation Details. For open-source LVLMs, we use Fastchat
to launch models and conduct the model inference on a single
GeForce RTX 4090.

Baseline Models. As there is no previous work that only utilizes
the inference capacity of LVLMs for multimodal recommendation,
we adopt the commonly chosen prompting strategies used in NLP
tasks: in-context-learning and chain-of-thought for comparison.
MM: The plain prompt, using the simple concatenation of the his-
torical item titles and images as the first segment. The second part
keeps the same as VST. MM-ICL: For ICL, we match each prefix
of the user’s historical interaction sequence with its correspond-
ing successor as demonstration examples. For example: "[Here is a
chronological list of my purchase history: {(𝑡1, 𝑖1), . . . , (𝑡𝑚−1, 𝑖𝑚−1)}]
[Then if I ask you to recommend a new product, you should recom-
mend 𝑡𝑚 . Now I’ve just purchased 𝑡𝑚 , I want to buy a new product...]".
The remaining part is the same as the second part of VST. MM-
CoT: For CoT, we adopt zero-shot CoT by adding "Please think
step by step." to the second part of the prompt, while the first part
is the same as MM. For example: "[Here is a chronological list of
my purchase history: {(𝑡1, 𝑖1), . . . , (𝑡𝑚, 𝑖𝑚)}][There are |𝑛 | candidate
products I am considering to buy . . . Please think step by step by con-
sidering my preferences based on the given titles and image sequence
of the purchased products.. . . ]".

3.2 Overall Performance
To demonstrate the effectiveness of our proposed VST strategy, we
employ GPT4-V, LLaVA-7b, and LLaVA-13b as pretrained LVLMS
and conduct experiments with four different prompt strategies
across four datasets. The complete experimental results are shown
in Table 1. From the table, we can observe that our proposed VST
reasoning strategy achieves the best or comparable performances
across all datasets, demonstrating the effectiveness of our approach.
Notably, our approach has a better performance on Sports dataset
than others. This might be due to the titles of this category of prod-
ucts containing much more noise, making the alignment between
textual and visual information more challenging for the employed
LVLMs. In contrast, through visual-summary generation, VST can

better leverage visual modality and capture more relevant informa-
tion from the image, reducing the impact of the noise from different
modalities to some extent.

3.3 Ablation Study
To analyze the effectiveness of the VST reasoning principle, we
conduct an ablation study on six variants of the proposed strategy.
The results on Toys dataset using LLaVA-13b are shown in Figure 3.
The reported results are the average of a minimum of three repeated
runs, aimed at minimizing the impact of randomness. titleSum-
VST refers to the prompt that also lets LVLMs distill information
from the title of an item: 𝑠𝑡 = 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (𝑡) ="What information can
you get from the title?", then appended by the summary distilled from
the corresponding image. title-based VST refers to instructing
LVLMs to distill information from an image by taking item title
into consideration, where 𝑠𝑖 = 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (𝑖) ="This is an image
related to 𝑡 . Please provide a detailed description of the given image."

From the results, we have the following observations: (1) VST can
capture more meaningful information from both textual and visual
modalities. The results show that VST has the capability to signif-
icantly enhance the ranking performance compared to non-VST-
based strategies. The improvement stems from VST’s proficiency in
multimodal understanding and serves better in sequential scenarios,
where information from different sources needs to be integrated
effectively. (2) Information from the title can boost performance,
but it depends on the quality of the title and the alignment be-
tween the title and the image. Compared to the results among VST,
title-VST, titleSum-VST, and title-based VST, we can observe that
adding the title information doesn’t yield improvement. This lack
of improvement is likely due to the visibility of toy titles in images
or the easy identification of entities mentioned in titles from the
images themselves. Therefore, combining title information with
VST does not provide substantial additional benefits. Whether to
include titles during reasoning remains a hyperparameter decision
dependent on the quality of titles in each dataset.

3.4 Case Study
In this section, we compare the ranking lists generated by LLaVA-
13b usingVSTwith title-only and title-image concatenation prompts.
The results are shown in Figure 4. Here are our observations from
comparing the outputs: Both title-only and VST strategies success-
fully rank the target item as the first position, while the naive
concatenation of title and image places it fourth. This discrepancy
suggests that raw images may contain an excess of information,
which could be perceived as redundant and introduce additional
noise into our ranking task. On the other hand, the VST strategy
offers a more refined approach. By utilizing VST, we not only incor-
porate information from the title but also extract richer and more
relevant details from the image itself. Such details also align closely
with the marketing selling points of the product. Consequently, the
VST strategy emerges as a more effective prompt for multimodal
recommendation, as it combines textual and visual cues to provide
a comprehensive understanding of the item, thereby enhancing the
performance of the ranking results.
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CASE STUDY
Title-only
Input: UHI + Title + CRI 
Output: 
1. Don’t Let the Pigeon Drive the Bus Game 
2. TabletTopics Family: Questions to Start Great Conversations
3. Kid Chuck Bumper Cars
......
10. Wikki Stix Big Count Box

Title

1. Mastermind
2. Say Anything
3. My First Lab Duo-Scope Microscope
4. King of Tokyo Power Up Expansion Game
5. Foam Maverick Pogo Stick
6. Helicopter with Gyro
7. Volcano Making Kit

Image Description

1. The image shows the game “Mastermind,” a well-known board game. The packaging indicates that this game
is meant for two players, who are typically aged 8 and above. It’s a logic game.
2. The image appears to be the cover of a board game called “Say Anything.” It's a party game designed for 3-8 
players who are 13 years of age or older. The bottom indicates the party atmosphere of the game. The cover also
boasts that the game has won 30 awards, signaling its popularity and recognition in the gaming community.
……
7. The image displays a science kit, including a segmented dish, …, a plastic volcanic structure. It is designed for
educational purposes to model volcanic eruption, potentially for school-age children as a learning tool.

Title-Image

1. Mastermind

2. Say Anything

……

7. Volcano Making Kit

VST
Input: UHI + Image Description + CRI
Output: 
1. Don’t Let the Pigeon Drive the Bus Game 
2. TabletTopics Family: Questions to Start Great Conversations
3. Paint Cups with Color-Coded Lids
......
10. Flyer Scooter

User’s Historical Interaction Instruction (UHI)

Here is a chronological list of my purchase history for some toys-related products including the title / title and image / image description of each product.

Candidate Reranking Instruction (CRI)

There are 10 candidate products I am considering to buy:
{… Flyer Scooter, Paint Cups with Color-Coded Lids, Don’t Let the Pigeon Drive the Bus Game, Wear Charms Spectacular Spinner …}
Please rank these 10 candidate products that I would like to purchase next most according to the given purchase history.

Title-Image
Input: UHI + Title-Image + CRI
Output:
1. Paint Cups with Color-Coded Lids
……
4. Don’t Let the Pigeon Drive the Bus Game
……
10. Wikki Stix Big Count Box

Figure 4: Case study. Text in red indicates the target item. Text in orange, purple, or blue indicates the pattern to describe the
item for the corresponding prompt. Text in yellow highlights some key features obtained through visual-summary generation.

4 CONCLUSION
In this work, we investigate the performance of different reasoning
strategies for LVLMs in multimodal recommendation scenarios
and identify a notable limitation in LVLMs’ capability to effec-
tively handle multiple images. To bridge this gap, we propose a
Visual-Summary Thought (VST) strategy to distill information from
images. By leveraging LVLMs’ visual understanding, VST aims to
harness their strengths while rectifying deficiencies in handling
multiple images. Extensive experiments conducted on four real-
world datasets using both API-based LVLMs such as GPT4-V and
open-source models like LLaVA-7b and LLaVA-13b, consistently
demonstrate the effectiveness of our proposed VST.
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