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ABSTRACT
To improve relevance scoring on Pinterest Search, we integrate
Large Language Models (LLMs) into our search relevance model,
leveraging carefully designed text representations to predict the
relevance of Pins effectively. Our approach uses search queries
alongside content representations that include captions extracted
from a generative visual languagemodel. These are further enriched
with link-based text data, historically high-quality engaged queries,
user-curated boards, Pin titles and Pin descriptions, creating robust
models for predicting search relevance. We use a semi-supervised
learning approach to efficiently scale up the amount of training
data, expanding beyond the expensive human labeled data available.
By utilizing multilingual LLMs, our system extends training data
to include unseen languages and domains, despite initial data and
annotator expertise being confined to English. Furthermore, we
distill from the LLM-based model into real-time servable model
architectures and features. We provide comprehensive offline ex-
perimental validation for our proposed techniques and demonstrate
the gains achieved through the final deployed system at scale.

CCS CONCEPTS
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1 INTRODUCTION
Search relevance measures how well the search results align with
the intent behind the search query. Using a relevance objective al-
lows search engines to ensure that the content displayed to users is
genuinely pertinent to their information needs. Without relevance
scores, search engines might overly rely on factors like past user
engagement, leading to results skewed towards click-worthy or
sensational content rather than truly relevant information, com-
promising the quality and usefulness of a search engine.

Pinterest Search is one of the key surfaces on Pinterest where
users can discover inspiring contents that align with their infor-
mation needs. Delivering a relevant search feed helps better fulfill
users’ intent and bring them the inspiration to create a life they
love. The visual discovery nature of Pinterest Search poses unique
challenges, as most content on the platform is present in the format
of images or videos. Additionally, Pinterest Search serves a global
audience in real-time, needing to accommodate users who speak
over 45 different languages with diverse cultural backgrounds and
interests using Pinterest for visual discovery.

To measure the relevance between queries and Pins, we use a 5-
level guideline, where higher levels indicate better relevance. Com-
pared to binary relevance judgements, such fine-grained relevance
judgments can better capture the complex relationship between
queries and Pins. Based on this guideline, we build a search rel-
evance model by fine-tuning Large Language Models (LLMs) to
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predict the relevance scores given a query and the text representa-
tion of a Pin. We incorporate carefully designed text representation
for each Pin, including Pin titles, descriptions, image captions gen-
erated by a generative visual language model, link-based text data,
user-curated boards, and historically high-quality engaged queries.
These enriched text features contribute to a more robust relevance
model. In real-time serving, however, the powerful LLMs come
with high latencies and computational costs. Therefore, we apply
the knowledge distillation technique where the relevance scores
are distilled from the LLM-based teacher model into a real-time
servable student model. The LLM-based teacher model can greatly
scale up the training data and also expand to languages and do-
mains that were not initially covered in the human-annotated data,
which greatly enhances the performance of the production rele-
vance model.

We would like to highlight our contributions as follows:

• We build an LLM-based relevance system for Pinterest Search
and validate its performance and effectiveness through ex-
tensive offline experiments and online A/B tests.

• We exploit the potential of incorporating enriched text fea-
tures and metadata to build a robust search relevance model.

• We empirically demonstrate the benefit of knowledge distil-
lation in scaling up training data and generalizing the data
to various languages and countries.

2 RELATEDWORK
Relevance modeling can be categorized into token-based and neural
model-based approaches. Token-based methods, like TF-IDF and
BM25 [22, 23], focus on term matching but lack semantic under-
standing and often fail to capture the full context of the search. Neu-
ral model-based approaches leverage neural networks and language
models to better capture nuanced semantic relationships between
queries and documents, which have made significant progress in
relevance modeling [27].

In language model-based relevance modeling, there are mainly
two types of approaches used in practice: representation-based and
interaction-based. Representation-based models, also known as bi-
encoder models, independently encode a query and document into
a common dense space and then score their relevance using vector
dot-product or cosine similarity. These models are typically trained
by minimizing the contrastive loss with in-batch negative sampling
[13, 15]. Although representation-based models are efficient for
retrieval tasks, they have limited representational power to capture
the intricate interactions between queries and documents.

Interaction-based models, also known as cross-encoder models,
jointly encode queries and documents. Compared to bi-encoder
models, these models can better capture the interaction between
queries and documents, hence are commonly used in the re-ranking
stage. For instance, monoBERT [17] uses BERT to encode concate-
nated query-document pairs and fine-tunes the model to minimize
pointwise binary classification loss. monoT5 [18] builds on this by
using the sequence-to-sequence T5 model [19] to directly output
relevance labels based on query-document inputs, and RankT5 [28]
further optimizes ranking performance using pairwise and listwise
ranking loss. RankLLaMA [15] fine-tunes the LLaMa model with
contrastive loss, achieving state-of-the-art performance on several

public benchmark datasets. In this work, we adopt a cross-encoder
architecture and fine-tune the LLMs by minimizing multi-class
classification loss.

Cross-encoder models with LLM backbones have demonstrated
significant improvements in relevance modeling performance. How-
ever, their high computational cost and latency during inference
limit their deployment in real-world search scenarios. To enable
real-time serving, one strategy is to apply knowledge distillation,
transferring knowledge from a large teacher model to a smaller
student model and augmenting existing training data with teacher-
generated labels [8, 12, 20, 24]. In our work, we distill from an
LLM-based cross-encoder teacher model to a lightweight student
model. The student model incorporates several in-house query em-
beddings and Pin embeddings, as well as text-matching features like
BM25 match scores. This approach greatly reduces online serving
latency while being able to narrow the performance gap with the
teacher model by scaling up the augmented teacher labels.

3 METHODOLOGY
3.1 Problem Statement
In our work, we formulate search relevance prediction as a multi-
class classification problem. The model categorizes Pins in response
to a search query into five ordered relevance levels: Excellent
/ Highly Relevant (L5), Good / Relevant (L4), Complementary /
Marginally Relevant (L3), Poor / Irrelevant (L2), and Highly Irrele-
vant (L1), as detailed in Table 1. Training and evaluation labels are
obtained through human annotators.

3.2 LLM as Relevance Model
3.2.1 Model Architecture. We leverage language models to predict
the relevance of a Pin to a search query based on textual informa-
tion. To achieve this, we utilize a cross-encoder structure [17] that
encodes the query and Pin text together, as depicted in Figure 1.
Specifically, we concatenate the query text and Pin text with a sepa-
rator token. The tokenized text is then fed into the language model
to generate a sentence embedding. For encoder-based language
models, we use the embedding of the [CLS] token (or <s>) as the
sentence embedding. In the case of decoder-based language models,
we use the embedding of the final non-padding token. This em-
bedding is then passed through several fully-connected layers. The
output dimension corresponds to the five relevance levels, and we
apply softmax to obtain the relevance scores. During training, we
fine-tune the pre-trained language models by minimizing pointwise
multi-class cross-entropy loss.

3.2.2 Pin Text Representations. Pins on Pinterest are rich multi-
media entities that feature images, videos and other content, often
linked to external webpages or blogs. Accompanying the image,
each Pin also includes a title, a description, and even user-generated
comments. To represent each Pin, we use the following varied set
of text features derived from metadata, the image itself, as well as
user-curated data. These features are designed with a focus on pro-
viding reliable high-quality representations, while retaining high
coverage across Pins on Pinterest Search.

(1) Pin titles and descriptions: These are the title and the
description for the Pin set by the user who created the Pin.
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Table 1: Five-scale Pin relevance guidelines.

Relevance Label Description

Excellent / Highly Relevant (L5) Exactly matches or directly associates with the search query.
Good / Relevant (L4) Close match or a potential substitute to the search query, with slight mismatches.

Complementary / Marginally Relevant (L3) Related to the search query but only partially matches it, not specifically addressing the intent.
Poor / Irrelevant (L2) Fitting into the general category but not serving the intended purpose or matching the user intent.
Highly Irrelevant (L1) Completely irrelevant to the search, potentially causing user dissatisfaction

[CLS]  Query  [SEP]  Pin Text

Encoder LLM

MLP

Five-scale relevance

Figure 1: The cross-encoder architecture in the relevance
teachermodel. Take the encoder languagemodels (e.g., BERT-
based models) for illustration.

(2) Synthetic image captions: We use an image captioning
model to generate synthetic image descriptions for the im-
ages. In our experiments, we use captions generated by BLIP
[14], an off-the-shelf image captioning model. An evaluation
by human assessors on a sample of 10,000 images showed
that 88% of these captions were both high-quality and rele-
vant to the image.

(3) High-engagement query tokens: We take the last 2 years’
worth of queries that had the highest engagements with
this Pin on the search surface, and collect all the unique
tokens across all of them. To maximize the quality of these
representations, we only use tokens from the querieswith the
most engagements, and consider high-quality engagements
such as repins (when a user saves a Pin to a board) and long
clicks (where users clicked into the linked page for more
than 10 sec).

(4) User-curated board titles: On Pinterest, users curate their
own personal collections called Boards, saving Pins to them
and giving them a title. In the past, we have demonstrated the
usefulness of the interactions shown by this human-curated
content [25], and in this work, we leverage the titles for each
board that a Pin has saved to.

(5) Link titles and descriptions: A key metric optimized for
Pinterest Search is the "long click", which occurs when a user
clicks through to a Pin’s linked webpage and spends over
ten seconds there. This behavior has historically correlated
strongly with search relevance, underlining the importance
of linked content in relevance modeling. Consequently, we
integrate the titles and descriptions of URLs into our models.
Our experiments found that these link titles and descriptions

are particularly effective in automatically imputing missing
titles and descriptions on Pins.

3.3 Distill LLM into Student Model
Since our cross-encoder language model based classifier is hard
to scale to Pinterest Search scale given real time latency and cost
considerations, we use a teacher-student distillation setup to distill
into a student relevance model, as shown in Figure 2.

Figure 2: The online-served student model is trained via dis-
tillation from the LLM-based relevance teacher model.

3.3.1 Model Architecture. The student model is based on a feed-
forward neural network that includes online ranking features such
as query embeddings and Pin embeddings, as well as numerical
and categorical features (described in Section 4.1.3). We transform
our numerical features into embeddings using linear transforms
[9] and also learn embeddings for any categorical features.

3.3.2 Knowledge Distillation and Semi-Supervised Learning. To
train our online relevance model, described in Section 3.3.1, we
utilize logged data from search engagements and impressions. This
vast dataset with billions of rows lacks relevance labels but includes
several real-time logged features for the search request and the Pin.

Here, we employ the LLM-based teacher model to generate soft
5-scale relevance labels, thereby augmenting our training dataset
to over 100 times the size of our human-labeled data pool. We
also employ a stratified sampling strategy to ensure a balanced
representation across all relevance labels in our training set. The
final training dataset contains the search query and a Pin along
with the relevance predictions from the teacher model.

The labeled and balanced dataset is subsequently used to train a
smaller, more computationally efficient student model optimized
for online serving. This student model is crucial for its ability to
predict relevance scores with low latency using real-time features.



CIKM ’24, Oct 21–25, 2024, Boise, Idaho, USA Wang and Narayanan, et al.

An overview of the search relevance system is illustrated in Figure
3. The relevance scores generated by this model are then utilized
alongside engagement predictions to determine the final ranking
of search results.

This blend of knowledge distillation and semi-supervised learn-
ing not only makes effective use of vast amounts of initially unla-
beled data. The user logged data, unlike human-labeled relevance
data, also includes a wide range of languages from around the world
and new concepts not encountered in our human-labeled data ow-
ing to the seasonality in Pinterest Search. By using a multilingual
LLM-based teacher model, we are able to successfully generalize
from human-labeled data focused on US queries to unseen lan-
guages and countries.

4 EXPERIMENTS
4.1 Experiment Setup
4.1.1 Datasets. The search relevance teacher model is trained and
evaluated using human-annotated labels following the 5-scale rele-
vance guidelines. Given the accuracy of a single rater is only around
70%, we train the model using soft labels aggregated from 3 raters.
Additionally, we apply a stratified sampling strategy based on an-
notated labels to obtain a more balanced dataset. The data is then
randomly split into a training set and a test set based on queries,
allowing us to better assess the model’s performance on unseen
queries. While several publicly available datasets exist for relevance
modeling [4, 16, 21], they do not contain those Pinterest-specific
text features. Therefore, we will focus on in-house data for the rest
of the discussions. Table 2 presents the label distribution in this
human-annotated dataset.

Table 2: Statistics of the human-annotated relevance dataset.

Dataset Total L1 L2 L3 L4 L5

Train 280,934 16.0% 19.7% 28.9% 13.1% 22.3%
Test 31,551 15.9% 20.0% 28.9% 13.1% 22.1%

4.1.2 Model Implementation. We use an LLM-based cross-encoder
model as the relevance teacher model, with the model architec-
ture described in Section 3.2.1. In this experiment, we evaluate
the following pre-trained language models: multilingual BERT𝑏𝑎𝑠𝑒
[7], T5𝑏𝑎𝑠𝑒 [19], mDeBERTaV3𝑏𝑎𝑠𝑒 [11], XLM-RoBERTa𝑙𝑎𝑟𝑔𝑒 [5],
and Llama-3-8B 1. These models are initialized from Hugging Face
checkpoints and fine-tuned using our in-house search relevance
training data. The training is conducted on 8 × 40G A100 GPUs.
We utilize the FusedAdam optimizer 2 and apply distributed data
parallel (DDP) for efficient model training. For larger language mod-
els such as Llama, we first load quantized model weights and then
apply qLoRA [6] for fine-tuning. Additionally, we incorporate gra-
dient checkpointing [3] and mixed precision techniques to further
improve training efficiency and memory usage.

1https://huggingface.co/meta-llama/Meta-Llama-3-8B
2https://nvidia.github.io/apex/optimizers.html#apex.optimizers.FusedAdam

4.1.3 Online Serving. The student model served online uses a range
of query-level features, including query interest ontology features,
shopping interest features, and SearchSAGE query embeddings [1].
For Pin-level features, it uses PinSAGE embedding [25] (trained rep-
resentations for each Pin using the GraphSAGE [10] algorithm on
the Pinterest board graph), visual embeddings for the image [2, 26],
and SearchSAGE Pin embeddings [1]. Additionally, the model incor-
porates several query-Pin interaction features, such as BM25 scores
for different text fields, historical engagement rates between the
Pin and the query, and the fraction of overlapping tokens between
the query and different text fields. These features are embedded
and passed through a feed-forward network to predict five-scale
relevance scores. This model is currently served real-time.

To train this model, we employ the stratified sampling strategy
mentioned in Section 3.3.2 to produce a training dataset comprising
30M rows of teacher-labeled query-Pin pairs. Since the dataset is
based on sampled user interaction data from around the world,
it contains queries in more than 45 languages, spanning different
countries, interests and cultural contexts.

4.2 Experiment Results
4.2.1 Evaluation Metrics. For all offline experiments, we report the
accuracy of 5-scale relevance predictions as well as the AUROC
metrics for binarized labels with thresholds at 3, 4, and 5, since
correctly identifying highly relevant content is more important for
search ranking.

4.2.2 Comparison of Language Models. Table 3 shows the perfor-
mance of different language models. As a baseline, we include a
model that relies solely on the SearchSage embeddings [1]. In this
comparison, we keep the text features for each Pin and the max-
imum text length fixed, varying only the language models. The
results in Table 3 clearly demonstrate that the language models
offer additional improvements over our in-house content and query
embedding. Furthermore, more sophisticated language models and
larger model sizes consistently enhance the relevance prediction
performance. Specifically, the 8B LLaMa-3 model outperforms the
multilingual BERT𝑏𝑎𝑠𝑒 model by 12.5% and the baseline model by
19.7% in terms of 5-scale accuracy.

Table 3: Comparisons of different languagemodels on 5-scale
relevance prediction. The AUROC metrics are reported for
binarized labels with thresholds 3, 4, and 5.

Model Accuracy AUROC 3+/4+/5+

SearchSage 0.503 0.878/0.845/0.826

mBERT𝑏𝑎𝑠𝑒 0.535 0.887/0.864/0.861

T5𝑏𝑎𝑠𝑒 0.569 0.909/0.884/0.886

mDeBERTaV3𝑏𝑎𝑠𝑒 0.580 0.917/0.892/0.895

XLM-RoBERTa𝑙𝑎𝑟𝑔𝑒 0.588 0.919/0.897/0.900

Llama-3-8B 0.602 0.930/0.904/0.908

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://nvidia.github.io/apex/optimizers.html#apex.optimizers.FusedAdam
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(100× human labels) 

offline inference

samples from 
search log

fine-tune

Figure 3: Overview of the proposed search relevance system at Pinterest.

4.2.3 Importance of Enriching Text Features. To predict the rele-
vance of a Pin to a query using only textual information, we enrich
the Pin text representations with several carefully designed text
features, detailed in Section 3.2.2. We conduct an analysis to as-
sess the impact of each text feature on relevance prediction, using
mDeBERTaV3𝑏𝑎𝑠𝑒 as the language model and setting the maximum
text length to 256. The results, summarized in Table 4, demonstrate
that the model’s performance consistently improves with the se-
quential addition of these text features. This indicates that enriched
text features and metadata significantly contribute to building a
more robust relevance model.

Table 4: Benchmark the improvement with the sequential
addition of text features.

Text Features Accuracy AUROC 3+/4+/5+

Synthetic image caption 0.457 0.838/0.781/0.760

+ Pin title and description 0.561 0.906/0.875/0.876

+ Link title and description 0.565 0.910/0.880/0.880

+ User-curated board titles 0.577 0.916/0.888/0.890

+ High-engagement query tokens 0.580 0.917/0.892/0.895

4.2.4 Scaling Up Training Labels through Distillation. By using
knowledge distillation and semi-supervised learning, as described
in Section 3.3.2, we can effectively scale the training data beyond the
limited human-annotated data. Themultilingual LLM-based teacher
model is capable of generating training data for out-of-domain sam-
ples from different languages and countries, even though the anno-
tated data is confined to English. To evaluate the effectiveness of
this approach, we use a student model trained on human-annotated
data as a baseline and experiment with varying sizes of distilled
labels for training. We evaluate the models using the same test
dataset as the teacher model. The results, summarized in Table 5,
demonstrate that training on augmented teacher-generated labels
yields better performance compared to training solely on human-
annotated data. Moreover, as the size of the training data increases,
the student model consistently shows improved performance.

4.3 Online A/B Testing
In this section, we present the results from A/B tests conducted,
replacing the existing search relevance systems with the model
trained using our newly proposed pipeline.

Table 5: Comparisons of production model performance
when training on different amounts of labels.

Training Data Accuracy AUROC 3+/4+/5+

0.3M human labels 0.484 0.850/0.817/0.794

6M distilled labels 0.535 0.897/0.850/0.841

12M distilled labels 0.539 0.903/0.856/0.847

30M distilled labels 0.548 0.908/0.860/0.850

4.3.1 Human Relevance Evaluations. To understand the effective-
ness of our new relevance model, we set up evaluations with human
annotators to assess the relevance of the search feeds with and with-
out the new relevance model serving traffic. For this evaluation, we
selected a random set of 300 queries across both high-frequency
(head) and low-frequency (tail) queries, using real user queries from
a given country. We computed ranked lists for these queries with
and without our model improvements, and measured the increase
in normalized Discounted Cumulative Gain (nDCG) observed with
our model. The results were evaluated at depths of 20. We mapped
the five relevance labels (L1 to L5) to 0, 0.25, 0.5, 0.75 and 1.0 respec-
tively (see Table 1). In the nDCG computation, we normalized the
DCG using an ideal DCG metric that assumes an infinite number
of L5 relevant inventory available. Specifically, the nDCG@K here
is calculated as follows

𝑛𝐷𝐶𝐺@𝐾 =

∑𝐾
𝑘=1 0.25(𝐿 − 1)/𝑙𝑜𝑔2 (1 + 𝑘)∑𝐾

𝑘=1 1/𝑙𝑜𝑔2 (1 + 𝑘)
, 𝐿 ∈ {1, 2, 3, 4, 5}.

Our proposed relevance modeling pipeline leads to a +2.18% im-
provement in search feed relevance, as measured by nDCG@20.

In Table 6, we report results of our Pin search feeds generated for
users in different countries, as well as the improvements observed
for queries with high shopping intent. Here we report the increases
in precision@8 using the mapped five-scale relevance labels (0,
0.25, 0.5, 0.75, 1.0). We use precision and a lower evaluation depth
for these evaluations to control the evaluation costs. The results
indicate that the multilingual LLM-based relevance teacher model
effectively generalizes across languages not encountered during
training.

4.3.2 User Triggered Experiments. In the context of Search experi-
ments, the primary metric we focus on, in addition to relevance, is
the search fulfillment rate. This metric is defined as the number of
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Table 6: Human relevance judgements with search feeds seen
across different countries demonstrate generalization across
unseen languages.

Segment precision@8

US +1.5%
DE +0.64%
FR +0.84%
UK +1.3%

US: Shopping Interest Queries +1.39%

search sessions that result in a high-significance user action. In Ta-
ble 7, we show that the improved relevance for the feed also results
in big overall increases in search engagement and fulfillment. We
break down results by country to show that the improvements we
see in relevance also apply to non-US countries, despite not having
annotated data available for those countries during model training.

Table 7: Search Fulfillment Rate increases with the new rele-
vance system show a significant uptick globally.

Segment Fulfillment Rate (A/B)

US Traffic +0.7%
Non-US Traffic +2.0%

5 CONCLUSION
In this work, we present an LLM-based relevance system for Pin-
terest Search. We thoroughly describe each building block of this
system, including training data collection, model architecture, en-
riched text features, augmented label generation, and online serving.
We conduct extensive offline experiments to validate the effective-
ness of each modeling decision. Lastly, we present the results from
online A/B experiment, which shows an improvement of >1% in
search feed relevance and >1.5% in search fulfillment rates. To fur-
ther enhance the efficacy of our relevance system, future work will
explore the integration of serveable LLMs, vision-and-language
multimodal models (VLLMs), and active learning strategies to dy-
namically scale and improve the quality of the training data.
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