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ABSTRACT
Adopting advances in recommendation systems is often challeng-
ing in industrial settings due to unique constraints. This paper aims
to highlight these constraints through the lens of feature inter-
actions. Feature interactions are critical for accurately predicting
user behavior in recommendation systems and online advertising.
Despite numerous novel techniques showing superior performance
on benchmark datasets like Criteo, their direct application in indus-
trial settings is hindered by constraints such as model latency, GPU
memory limitations and model reproducibility. In this paper, we
share our learnings from improving feature interactions in Pinter-
est’s Homefeed ranking model under such constraints. We provide
details about the specific challenges encountered, the strategies
employed to address them, and the trade-offs made to balance per-
formance with practical limitations. Additionally, we present a set
of learning experiments that help guide the feature interaction ar-
chitecture selection. We believe these insights will be useful for
engineers who are interested in improving their model through
better feature interaction learning.
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Figure 1: Pinterest Homefeed Page

1 INTRODUCTION
Pinterest is one of the largest content sharing platforms with over
500M monthly active users[9]. The Homefeed, shown in Figure 1,
serves as the primary entry point for most users and is a major
source of inspiration, accounting for the majority of the user en-
gagement on the platform. Users on Pinterest can perform a variety
of actions such as save, close-up, hide, etc. to interact with the Pins.
To enhance our users’ experience on Homefeed, we use a recom-
mendation system to ensure we serve the most relevant Pins to any
given user. We use a standard retrieval, ranking and blending based
recommendation system. The ranking model is responsible for pre-
dicting the probability of different user actions. This is achieved
using a multi-task modeling approach.

Our ranking model can be categorized into three parts: feature
preprocessing, feature interaction, and task prediction. Feature in-
teraction is a critical part of the model, essential for effectively
capturing the complex relationships between features and labels.
In recent years[11][14][8][17], many architectures have been pro-
posed to efficiently learn these relationships. However, these ar-
chitectures are often evaluated in an offline setting on benchmark
datasets and do not consider the real-world constraints that indus-
trial recommendation systems face. Limitations such as excessive
number of hyperparameters and high memory utilization make
these techniques impractical in industrial settings. Navigating these
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(a) Baseline Configuration (b) New Configuration

Figure 2: Homefeed ranking model

constraints is key to improving our model and providing value to
our users.

The core contributions of this paper are summarized as follows:
• We detail the constraints faced in industrial settings and
contrast them with academic research.

• We present a set of learning experiments to help guide the
selection of appropriate interaction architectures and hyper-
parameters.

• We share our learnings about improving feature interactions
in the ranking model using the learning experiments under
these industry specific constraints.

The remainder of this paper is organized as follows: Section 2
reviews related work. Section 3 describes the Homefeed ranking
model. The constraints we work with are detailed in Section 4. Our
learning experiments and experiment results using different feature
interaction layers are reported in Section 5. Finally, we conclude
our work in Section 6.

2 RELATEDWORK
Most industrial recommendation systems today are based on deep
neural network models and a key part for most of these models is
to effectively learn the feature interactions. Architectures like the
Wide & Deep[1] and DeepFM[5] show that learning lower order
and higher order feature interactions is useful. [2] shows that Click-
Through Rate Prediction on the Criteo dataset has been getting
better over the years with better feature interaction architectures.

AnMLP allows for implicitly modeling higher order feature inter-
actions. DCN[12] and its successor DCNv2[13] add an explicit fea-
ture cross to learn better interactions. Similarly, xDeepFM[7] uses a
Compressed Interaction Network (CIN) to learn the lower order and
higher order feature interactions in an explicit way. AutoInt[10]
proposes an attention based mechanism to explicitly model the
feature interactions in a low-dimensional space.

Masknet[14] uses an instance-guided mask to aid the interaction
learning. FinalMLP[8] shows a well-tuned two stream MLP model
can outperform explicit crosses. GDCN[11] uses gating to filter out
noisy feature interactions allowing for even higher-order feature
interactions. DHEN[16] proposes a framework combining multiple
feature interactions together. SDCNv3[6] proposes to use a Shallow
& Deep Cross Network which integrates both low-order and high-
order feature interactions. Despite the increased accuracy from
these new architectures, they increase the latency and memory
consumption of the model which makes it harder to use in industry
settings.

DeepLight[3] proposed to alleviate this problem by using a mech-
anism to prune the neural network to reduce inference time while
maintaining the model performance. However, pruning introduces
the risk of losing reproducibility, which is important in industry
settings. The transformer architecture, which uses a multi-head
attention mechanism to be able to summarize a set of tokens, has
been shown to be effective at learning feature interactions[4].

3 HOMEFEED RANKING MODEL
The Homefeed ranking model is a deep learning model responsible
for predicting point-wise estimates of user engagement probabili-
ties. Given a user 𝑢 and a Pin 𝑝 , the model predicts 𝐾 probabilities -
one for each of the 𝐾 user actions we care about like save, close-up,
hide, etc. We use a combination of dense features, sparse features
and embedding features to represent the user, the Pin and the con-
text. The dense features are normalized for numerical stability. We
represent the sparse features using learnable embeddings and select
the embedding size depending on the cardinality of the feature. We
project larger embedding features onto a smaller dimension before
feeding them into the model. One of the most important embedding
features is our user sequence embedding. It is learned with a trans-
former based architecture[15] using the user’s past engagements as
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input. The output from this transformer is pooled into an embed-
ding feature. The sparse and embedding features are L2 normalized
before being concatenated with the dense features into a single
feature embedding. This feature embedding is used as input to the
feature interaction layers. We use 4 stacked full-rank DCNv2[13]
layers to model the feature interactions. We concatenate the crossed
feature embedding and the input feature embedding before passing
it into the MLP layer. We use a shared MLP with multiple hidden
layers and predict 𝐾 outputs corresponding to the 𝐾 tasks. The
model is trained on users’ past engagement data using weighted
cross entropy loss. The weights in the loss are selected according
to business needs. We treat this architecture shown in Figure 2a as
the baseline in all of our experiments.

4 CONSTRAINTS
When iterating on an industrial recommendation system, it is cru-
cial to account for the various constraints on the ranking model.
Below, we outline some of these constraints, focusing specifically on
those pertinent to our feature interaction experiments, and contrast
them with academia. This is not an exhaustive list, as it excludes
other important considerations such as diversity and balancing
business metrics.

4.1 Memory
To effectively utilize our computational resources, the batch size
used to train our model is chosen so that the maximum allocated
memory during model training is approximately 60% of the total
available memory. This allocation leaves room for system memory,
memory fragmentation, and potential future projects that might
increase memory usage. Though we observe that increasing this
further improves our model quality, if the maximum allocated mem-
ory exceeds 75%, we encounter intermittent out-of-memory (OOM)
errors during model retraining. To mitigate this, we can reduce the
batch size but it comes at the cost of model quality and introduces
a confounding variable in our experimentation. Therefore, any new
technique that requires substantial additional memory must signif-
icantly improve model quality to offset the loss due to the reduced
batch size.

This is usually not a consideration for academic research where
the batch size may be tuned to maximize the target metrics and
training time.

4.2 Latency
Model inference latency is a significant component of our overall
system latency. Any increase in this latency reduces the through-
put of our distributed serving system. As a result, we then need
to add additional machines to get the same serving throughput
leading to higher operational costs. It is imperative to ensure that
any improvements in the model justify these additional costs. Fur-
thermore, increased model latency can extend the training time,
thereby impacting development velocity.

A 5% increase in latency may not have critical effects in academic
research but in industrial application it would increase serving costs
significantly. That being said, it is one of the easier constraints to
trade-off because of easy access to additional compute.

4.3 Hyperparameters
Using a model architecture with numerous hyperparameters in-
creases the number of models that need to be trained to identify
the optimal configuration. As our users’ interests change, our data
distribution changes. This requires us to tune these hyperparame-
ters at a regular cadence to optimize the model for the latest data
distribution.

Academic papers usually perform extensive hyperparameter
tuning to identify the best performing variant. Since it is a one-time
cost, reducing the number of hyperparameters in the model usually
is not a consideration.

4.4 Reproducibility
It is crucial to ensure that our model can be re-trained using the
same data and produce consistent results. Without this consistency,
it becomes difficult to determine whether observed metric move-
ments are genuine improvements for a given change or simply
variations within the model. Therefore, any feature interaction
incorporated into the model should not decrease its reproducibility.

We measure reproducibility by computing the standard devia-
tion of the HIT@3/save metric amongst the runs using the same
configuration. A reproducible model should have low standard
deviation.

In academia, reproducibility is not an important factor. Metrics
are usually reported as the mean of the metrics from several runs
using the same configuration, but the standard deviation is not
usually compared.

4.5 Stability
We use a distributed training approach for our model, where numer-
ical instability can cause the model to fail. This requires us to restart
from a previous checkpoint or abandon the run entirely leading
to wasted computational resources. Any new feature interaction
incorporated into the model should not affect its stability.

Since we continuously retrain ourmodels on newer data, stability
across different data distributions is important. Academia usually
uses a fixed benchmark dataset to report metrics so stability isn’t
usually tracked.

5 EXPERIMENTS
5.1 Metrics
We use the following metrics to evaluate our models.

• HIT@3/save metric[15]: Although our model predicts multi-
ple actions, we use themost important action save to perform
offline evaluation of our models. We sort the logged results
from each user session according to new predictions and
calculate the number of saves in top 3 Pins. We look at this
metric compared to the baseline model and report it as a
percentage gain or loss.

• Memory: This is the peak allocated memory during training
as a percentage of the total available GPU memory.

• Latency: This is reported as the increase or decrease in the
model inference time across a large number of batches com-
pared to the baseline model.
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Table 1: Offline Evaluation of Learning Experiments

Layer nlayer/rank HIT@3/save Memory Latency

DCNv2 5 0.14% 69.8% +5.8%
Stacked 6 0.29% 71.1% +11.2%

7 0.38% 72.4% +17.3%
8 0.58% 73.7% +22.8%

4x DCNv2 2 0.05% 73.5% +21.7%
Parallel 3 0.33% 78.8% +44.5%

LR DCNv2 512 0.20% 65.4% +0.4%
with ReLU 1024 0.52% 65.9% +1.2%

5.2 Learning Experiments
In this section we present a set of learning experiments we ran to
determine which architecture changes are beneficial to the model.
The results from these learning experiments are in Table 1

5.2.1 Order of interactions. We evaluated the model’s response to
increasing the order of interactions by stacking additional feature
interaction layers. In our experiments, we successfully used up
to 8 stacked DCNv2 layers without encountering out-of-memory
(OOM) issues and observed metric improvements. This tells us that
our model benefits from even higher order interactions.

5.2.2 Parallel interactions. We checked the model’s response to
parallel layers designed to learn similar interactions. For instance,
parallel DCN layers may individually capture different interaction
patterns. In our experiments, running multiple stacked DCNv2
layers in parallel improved model performance. This tells us that
our model benefits from learning more than one feature interaction
of the same order.

5.2.3 Non-linearity of interactions. DCNv2 does not incorporate
non-linearity in its architecture. Oneway to add non-linearity inside
DCNv2 is to use the low rank (LR) version with a non-linearity
between the two low rank fully connected layers. We replace the
full rank DCNv2 layers with low rank layers as the baseline and use
ReLU layers as the non-linearity for experimentation. We compared
the models with different rank values and observed that our model
improved with the inclusion of non-linear interactions.

5.3 Variants
We selected several feature interaction architectures that claim
better performance than DCNv2 for experimentation. We provide
implementation details of the architectures below and also discuss
how they fit into our constraints. We also mention how the results
from the learning experiments guided us into the final model selec-
tion. The results from these experiments are in Table 2. A summary
of how each of the different architectures performs with respect to
the different constraints is in Table 3.

5.3.1 Transformer. To use a transformer for feature interaction,
we first project our 𝑆 sparse features into a common dimension 𝐷 .
We grouped our dense features and projected them 𝐶 times into
dimension 𝐷 . We projected the embedding features into dimension
𝐷 . Additionally, we projected the output from our user sequence

transformers 𝑈 times into dimension 𝐷 . This resulted in a final
feature set comprising (𝑆 + 𝐶 + 𝑈 ) tokens, each of dimension 𝐷 .
We then applied multiple transformer encoder layers for feature
interaction. The transformer output tokens were concatenated and
processed using an MLP.

In our experiments we set 𝐶 = 4 and 𝑈 = 4. We used different
values of number of heads, token dimension and number of layers
as shown in Table 2. Transformers are memory hungry, so we were
only able to train a 2 layer transformer encoder model without
facing OOM errors. This limits the order of feature interactions
to 2 which is bad because our model prefers higher order feature
interactions. We cannot reduce the batch size to accommodate more
layers because engagement metrics are not high enough compared
to the baseline. The latency and number of hyperparameters also
dissuaded us from exploring this architecture further.

5.3.2 FinalMLP. We conducted experiments with a focus on tun-
ing hyperparameters such as the number of layers, the sizes of the
hidden layers and the number of heads i.e k. We ran into OOM
errors with smaller values of 𝑘 . Although our model prefers parallel
interactions, we were not able to get the same performance as the
baseline using FinalMLP. As we increased the latent dimensions,
both memory usage and latency increased without any perfor-
mance improvement over the baseline. This led us to conclude that
the baseline method was significantly better at learning feature
interactions than the multi-head bi-linear fusion technique.

5.3.3 GDCN. The only hyperparameter we have to tune for GDCN
is the number of layers. We use roughly double the number of
parameters in each GDCN layer compared to DCNv2. This limits the
order of feature interactions we can learn because of the additional
memory used by the parameters. We know our model benefits from
much higher order feature interactions, so the gating provided by
GDCN is not useful.

5.3.4 Masknet. We experimented with two configurations: stack-
ing MaskNet layers sequentially and running them in parallel. Key
hyperparameters to tune include the projection ratio, the number
of blocks, and the output dimension. In our experiments we use
projection ratio = 2.0 and output dimension = 512 and only tuned
the number of blocks. We know that our model benefits from paral-
lel feature interactions and non-linearity in the interactions. Both
combined, the parallel MaskNet layer outperforms the baseline.
This comes with 3 hyperparameters to tune instead of one but that
it is not very limiting. We increase the memory consumption and
latency quite a bit with this architecture but the increase in model
quality is worth it.

5.3.5 SDCNv3. We swapped the 4 x stacked DCNv2 layer in our
feature interaction layer with stacked SDCNv3 layers which claim
better performance. We stacked d x d/2 feature cross layers and
experimented with changing the number of layers. We notice that
while the SDCNv3 has improved latency it doesn’t converge well
on our dataset and thereby drops the offline eval for saves@3. We
believe some of these feature interaction layers like SDCNv3 re-
quire extensive hyperparameter tuning to make the model perform
similar to our baseline model, so we didn’t explore it further.
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Table 2: Offline Evaluation of Variants

Transformer

nhead D nlayer HIT@3/save Memory Latency

2 64 1 -0.90% 62.2% -20.7%
2 64 2 -0.83% 67.7% -17.7%
2 128 2 -0.47% 65.5% -16.6%
8 256 1 -0.12% 78.6% -8.8%

FinalMLP

nhead D nlayer HIT@3/save Memory Latency

32 512 4 -1.30% 80.6% -3.3%
32 256 2 -1.51% 65.7% -9.3%
16 512 2 -1.52% 75.4% -6.6%
16 256 4 -1.67% 71.5% -5.9%

GDCN

nlayer HIT@3/save Memory Latency

3 0.00% 73.3% +11.2%
4 0.00% 76.7% +22.2%
5 -0.01% 80.0% +34.1%
6 -0.15% 83.4% +46.1%

DeepLight
hidden_sizes HIT@3/save Memory Latency

4096x4 -4.14% 65.7% -19.3%

SDCNv3
nDeepCrossLayers nShallowCrossLayers HIT@3/save Memory Latency

4 4 -6.23% 72.2% -13.9%
2 2 -1.21% 71.4% -25.6%

MaskNet

Type nlayer HIT@3/save Memory Latency

Stacked 1 +0.01% 69.2% +6.8%
2 +0.03% 76.2% +31.9%
3 +0.01% 83.3% +57.2%

Parallel 2 +0.13% 69.4% +17.7%
3 +0.28% 74.0% +36.1%
4 +0.32% 78.7% +57.5%

DHEN

Configuration HIT@3/save Memory Latency

[[MLP, Transformer], [MLP, Transformer]] -0.46% 75.8% -4.4%
[[DCNv2], [Transformer]] 0.63% 80.3% -5.7%
[[DCNv2], [MaskNet]] 0.77% 81.1% -1.4%
[[DCNv2, Masknet]] 0.66% 82.2% -0.7%

Table 3: Summary of how architectures perform with respect to different constraints.
✓ indicates that the change in this dimension is acceptable given the metric movement. ✗ indicates otherwise.

Variant Memory Latency Hyperparameters Reproducibility Stability
Transformer ✗ ✓ ✗ ✓ ✓

FinalMLP ✗ ✓ ✗ ✓ ✓

GDCN ✗ ✗ ✓ ✓ ✓

MaskNet ✓ ✗ ✓ ✓ ✓

SDCNv3 ✗ ✓ ✗ ✓ ✓

DeepLight ✓ ✓ ✗ ✗ ✓

DHEN ✗ ✓ ✗ ✗ ✗

5.3.6 DeepLight. DeepLight uses a lightweight interaction layer.
To make the comparison fair, we scale up the MLP component of

the DeepLight model. Despite this, the model can’t learn as use-
ful representations as the baseline. Additionally, we note that the
latency numbers reported for this model are before the specified
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Table 4: Online Evaluation of the Launch Candidate

Online Metric Change

Homefeed Save Volume +1.42%
Overall Time Spent +0.39%

pruning process in their paper. We did not tune all the required hy-
per parameters for their specified pruning process as the unpruned
model performance is far below our baseline.

5.3.7 DHEN. Since our model prefers parallel interactions and
higher-order interactions, we tried combining multiple feature in-
teraction layers using the DHEN architecture. Given the large num-
ber of hyperparameters involved, an extensive search is infeasible
within our compute budget. The hyperparameters we need to tune
include the number of layers, the specific interactions used in each
layer, the output size of each layer, and input transformations sim-
ilar to those used in the transformer. Table 2 shows some of the
variants we tried. The configuration is presented as a list of lists
where the first list represents each layer and the second list repre-
sents the interactions within the layer.

We note that DCNv2 layers combined with the parallel MaskNet
layers have good engagement metric gain. But the DHEN frame-
work is bulky because it involves splitting and concatenating be-
tween each layer in the model. This leads to unnecessary GPU
memory consumption and latency. We also ran into model stability
issues which dissuaded us from pursuing this architecture further.

5.4 Results
From Table 3 we can see that running multiple MaskNet layers in
parallel achieves a good trade-off for all of the constraints except
for latency. To reduce the latency of the model, we stopped concate-
nating the input and output of the feature interaction layer before
passing it to the MLP layer. We also reduced the size of the hidden
layers in the MLP. This resulted in a slight reduction in metric gain
and an overall reduction in the latency compared to the baseline.
Since we know that the model prefers higher order feature interac-
tions, we stacked 4 DCNv2 layers on top of the parallel MaskNet
layers. We tuned the hyperparameters of the MaskNet model to
get no latency increase and net zero increase in the number of
parameters while increasing the memory consumption by only 5%
absolute allowing us to use the same batch size. We also ran online
A/B tests using this new architecture, the results of which are in
Table 4. The final configuration has 3 parallel MaskNet blocks with
a projection ratio of 2.0 and output dimension of 512 and is shown
in Figure 2b. We confirmed that this architecture doesn’t decrease
reproducibility and did not observe any model instability issues in
any of our runs.

6 CONCLUSION
In this paper, we presented several constraints that industrial rec-
ommendation systems have to deal with and detailed how they
influenced our selection of a new feature interaction architecture.
This change improved our model and has been successfully de-
ployed in the Homefeed recommendation system at Pinterest. We

continue iterating on our feature interaction layer to further im-
prove our model. We hope these findings can inspire collaboration
between academia and industry to propose new architectures that
work well in industrial constraints.
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