
Measuring the RankingQuality of Recommendations in a
Two-Dimensional Carousel Setting

Nicolò Felicioni
Politecnico di Milano, Italy
nicolo.felicioni@polimi.it

Maurizio Ferrari Dacrema
Politecnico di Milano, Italy
maurizio.ferrari@polimi.it

Fernando B. Pérez Maurera
ContentWise

fernando.perez@contentwise.com

Paolo Cremonesi
Politecnico di Milano, Italy
paolo.cremonesi@polimi.it

ABSTRACT
Movie-on-demand and music streaming services usually provide
the user with multiple recommendation lists, i.e., carousels, in a two-
dimensional user interface, each generated according to different
criteria (e.g., TV series, popular artists, etc.). In this two-dimensional
setting it is not appropriate to use traditional ranking metrics de-
signed for a single ranking list. It is well known that users do not
explore a two-dimensional interface one row at a time, but rather
focus their attention in a triangular area at the top-left corner. Fur-
thermore, it is frequent for user interfaces to hide some items or
lists due to space constraints, which can be shown by performing
certain actions (i.e., click, swipe). In this paper we extend the widely
used NDCG to a two-dimensional recommendation setting with a
formulation that allows to account both the two-dimensional user
exploration behaviour and interface-specific design. We also com-
pare the proposed extension against single-list NDCG highlighting
that they can lead to a different choice of the optimal algorithm in
offline evaluation.

CCS CONCEPTS
• Information systems→Collaborative filtering; Recommender
systems; • General and reference → Evaluation.

KEYWORDS
Recommender Systems; User Interface; Evaluation
ACM Reference Format:
Nicolò Felicioni, Maurizio Ferrari Dacrema, Fernando B. Pérez Maurera,
and Paolo Cremonesi. . Measuring the Ranking Quality of Recommenda-
tions in a Two-Dimensional Carousel Setting. In International Workshop
on Industrial Recommendation Systems at KDD ’21, August 15, 2021, Online.
ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION
Traditionally, in the Information Retrieval and Recommender Sys-
tems domains, the objective has been to provide the user with the
best possible ranked list of results [6, 11, 22]. For this reason, many
metrics were developed to evaluate the quality of a one-dimensional
ranked list. A common assumption is that users will navigate the
list according to its order, therefore it is better for a correct recom-
mendation to be at the beginning of the list.

International Workshop on Industrial Recommendation Systems (IRS ’21) at KDD ’21,
August 15, 2021, Online
.

There are however several scenarios that do not fit into these
assumptions, mainly when the results are presented in a two-
dimensional grid rather than a single list. This is true both in infor-
mation retrieval [3] and in recommendation systems applications,
in particular for video-on-demand streaming services [7, 18, 26] and
music streaming platforms [1, 9]. Those services usually provide
users with multiple rows of thematically coherent recommenda-
tions (e.g., the most popular movies, a specific genre, new releases,
and so on, see Figure 1). These rows are referred to as widgets,
shelves or as carousels.

A simple way to adapt one-dimensional ranking metrics to a two-
dimensional interface is to concatenate all recommendation lists
into a single one. This strategy does not make realistic assumptions
and, we argue, is not appropriate. First, it is known that users do
not explore each carousel sequentially from the first to the last, as
concatenating them assumes. Rather, users start from the top-left
corner of the screen and proceed to explore the items both to the
right and to the bottom [16, 27]. This effect is also known as "golden
triangle" or "F-pattern". A visual example from an information
retrieval application [3] is shown in Figure 2. Another example from
a video streaming service [18] is shown in Figure 3. In addition
to this user behaviour, many websites and mobile applications
present carousels that are swipeable [1], i.e., the user can swipe
horizontally or vertically to reveal more items as well as lists that
were not previously visible. This is a common way to overcome the
limited space available in the user interface allowing to fit more

Figure 1: The Netflix homepage, an example of carousel user
interface in the multimedia streaming domain.



Figure 2: When using a search engine users concentrate their
attention on the top-left corner (golden triangle) [3].

Table 4: Number of interactions grouped by their type.

Interaction Type Count Percentage
View 6, 122, 105 58.54%
Access 4, 105, 530 39.26%
Purchase 221, 066 2.11%
Rating 9, 109 0.09%
Total 10, 457, 810 100%

Table 5: Number of interactions grouped by the item type.

Item Type Count Percentage
Episodes of TV series 9, 076, 428 86.79%
Movies 987, 518 9.44%
TV Movies and shows 162, 574 1.56%
Movies and clips in series 231, 290 2.21%
Total 10, 457, 810 100%

Table 6: Number of items grouped by their type.

Item Type Count Percentage
Episodes of TV series 123, 831 85.36%
Movies 13, 733 9.47%
TV Movies and shows 5, 722 3.94%
Movies and clips in series 1, 788 1.23%
Total 145, 074 100%

5.1 Analysis of the dataset
ContentWise Impressions contains 10, 457, 810 interactions; 307, 453
impressions with direct links to interactions; and 23, 342, 617 im-
pressions without direct link to interactions. The dataset also con-
tains 42, 153 users; 145, 074 items and 28, 881 series.

In Table 4, we highlight the distribution of the interactions when
grouped by interaction type, where 97.8% of the dataset is comprised
of view and access interactions. Similarly, in Table 5, we present
the distribution of interactions by item type, where 96.23% of the
interactions correspond to episodes of TV series and movies. Lastly,
in Table 6, we show the distribution of item types, where the same
episodes of TV series and movies item types represent 94.83% of the
total items.

We observed that users, items, and series, present long-tail distri-
butions. For users, 27.96% most popular users are associated with
80% of the interactions. For items, 12.06% most popular items corre-
spond with 80% of the interactions. For series, 4.05% most popular
series appear in 80% of the interactions.

The average number of interactions per user is 248 (22 if counting
direct interactions from impressions), where the maximum and the
minimum number of interactions made by a single user are 13, 517
and 2 (2, 886 and 1 if counting direct interactions from impressions),
respectively.

For items, the average number of interactions received per item
is 72 (25 if counting interactions from impressions), where the
maximum and the minimum number of interactions received by a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Recommendation Position

0
1

2
3

4
5

R
ow

P
os

it
io

n

102

103

104

Figure 2: Heatmap of the number of interactions per posi-
tion on the screen. Most interacted items are located in the
�rst rows and on the �rst positions of the list. Values are
log-scaled.

single item are 23, 939 and 1 (6, 260 and 1 if counting interactions
from impressions), respectively.

For impressions with direct links to interactions, the average
number of interactions received per impression is 2, where the
maximum and the minimum number of interactions received by a
single item are 213 and 1, respectively.

In Figure 2, we show a heatmap that indicates the most interacted
positions of the recommendation lists based on the row position on
the screen. Speci�cally, we see that most interactions happen be-
tween the �rst three row positions, and the �rst ten item positions.

5.2 Comparison with other datasets
As previously mentioned in Section 2, currently, no impressions
datasets are publicly available to the community. As such, we gath-
ered and reported their statistics using the ones described on works
that used those datasets.

To the best of our knowledge, ContentWise Impressions is the
�rst dataset with impressions to be open-sourced. In previous
years, other articles have used private datasets[7, 14], which were
not released to the community. Others were disclosed under non-
redistribution clauses on challenges[1, 2, 13, 20], where only a few
researchers have access to them. Furthermore, ContentWise Im-
pressions provides both impressions present in the interactions
and without any associated interaction. Both LinkedIn PYMK Im-
pressions and LinkedIn Skill Endorsement [14] also present both
impressions. On the other hand, other datasets [1, 13] only provided
impressions present in the interactions.

Another advantage of ContentWise Impressions is that it is sub-
sampled in a way to be easily usable for research purposes without
requiring signi�cant computation resources. While researchers can
indeed preprocess and subsample bigger datasets, if needed, this
may result in di�erent articles relying on di�erent subsampling,

Figure 3: Visualization of the number of user interactions
on each position on a user interface [18]. A demarcation be-
tween the first and second half of the columns is visible.

recommendations and carousels that the user can easily browse.
However this puts additional overhead on the user that has to
actively interact with the system to access the recommendations.
Hence, it is preferable for a correct recommendation to be visible
with the least possible number of user actions, as also noticed in
[15].

In order to take those factors into account, in this paper we
propose to extend the one-dimensional NDCG metric to consider
both the two-dimensional user exploration behaviour and the user
interface characteristics. We show that the two metrics can lead to
different results when used to select which recommenders to use
in the carousel interface.

The rest of the paper is organized as follows, in Section 2 we
summarize the characteristics of a carousel setting, in Section 3 we
formulate an extended version of NDCG, in Section 4 we perform
an offline comparison of the results in a single list and carousel
interface. Finally in Section 5 we draw the conclusions.

2 CHARACTERISTICS OF A CAROUSEL
SETTING

The carousel interface layout and the way it is usually generated
by video-on-demand and music streaming platforms has important
characteristics that distinguish it from a single-list setup:

Interface: A two dimensional user interface with multiple
carousels. Some carousels or recommendations may be hid-
den due to limited page size and be accessible only via user
actions (i.e., click, swipe).

Recommendations: The lists shown to the users are gener-
ated with different algorithms or by different providers and
no single post-processing step is applied. While each indi-
vidual recommendation list does not contain duplicates, the
same item may appear in multiple carousels.12

User Behaviour: The user will focus on the top-left triangle
of the screen rather than exploring the carousels sequen-
tially. Furthermore, they will explore the recommendations
in different ways according to which actions they need to
perform in order to reveal them.3

While a carousel layout may seem similar to a traditional merge-
list embedding, where multiple recommendation list are combined
into one, this is not the case. In a real scenario, there are multiple
constraints. First, the carousels may be generated by different con-
tent providers, each of them unaware of how the other lists are
generated or by whom. This means that the composition of the
layout as well as the recommendations of the other providers are, in
general, not known. It is for this reason that different carousels may
contain similar recommendations. Furthermore, a content provider
that wishes to select the optimal carousels to display has limited
degrees of freedom and can only alter the content and relative
ordering of those it is tasked to provide.

3 EXTENDING ONE-DIMENSIONAL NDCG
One of the most used metrics for ranked list evaluation is the Dis-
counted Cumulated Gain (DCG), as well as its Normalized version
(NDCG) [13, 14]. This metric comes from the information retrieval
domain and is widely used to evaluate recommendation systems.
The DCG metric relies on two assumptions:

(1) highly relevant results are more valuable for a user;
(2) within a list of results, it is preferable to have relevant results

in the first positions
Let 𝑐 be the recommendation list length, i.e., cutoff, and 𝑟𝑒𝑙 (𝑖) the
relevance of the item in position 𝑖 . The DCG is defined as the
following discounted sum of gains:

𝐷𝐶𝐺 =

𝑐∑
𝑖=1

𝑔𝑎𝑖𝑛(𝑖) · 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (𝑖)

The 𝑔𝑎𝑖𝑛 function is responsible for rewarding highly relevant
results, while the 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 function introduces a penalization that

1A significant example are content aggregators, which combine carousels from different
providers: Netflix, Youtube, Prime Video, etc.
2For example, in the Netflix homepage shown in Figure 1 the TV series Space Force
appears both in the TV Comedies and New Releases carousels.
3Usually users tend to navigate more easily with simple swipes rather than repeated
mouse clicks, hence their behaviour, as it is known, will change according to the device.

2



should increase the further the item is from the beginning of the
list.

One of the most used formulations for the DCG is the following
[2]:

𝐷𝐶𝐺 =

𝑐∑
𝑖=1

2𝑟𝑒𝑙 (𝑖) − 1
log2 (𝑖 + 1)

Hence, 𝑔𝑎𝑖𝑛(𝑖) = 2𝑟𝑒𝑙 (𝑖) − 1 and 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (𝑖) = 1
log2 (𝑖+1) . Notice

that this formulation is only one of many possible formulations for
the DCG. Several other ways of rewarding and discounting results
have been proposed in previous research [17, 28]. In the following,
we will start from this formulation and extend it since it is one of
the most used. Other types of gain and discount functions can be
extended in an analogous way. We leave the analysis of different
gains and discounts as future work.

In a two-dimensional scenario, the standard DCG definition
could be naively adapted in the following way. Let ℎ be the hori-
zontal dimension of the interface (i.e., the length of each carousel)
and 𝑣 the vertical dimension of the interface (i.e., the number of
carousels). The carousels can be concatenated in a single list of
length 𝑐 = 𝑣 · ℎ items on which the standard DCG formulation can
be applied. This strategy assumes that the users will explore all
carousels sequentially, from the first to the last, which, as previ-
ously discussed, is not consistent to the user behaviour and does
not account for the interface navigation constraints. Therefore,
we suggest researchers do not apply this strategy as it does not
represent a realistic scenario.

Thus, inspired by [13], we make the following assumptions the
two-dimensional DCG should meet:

(1) highly relevant results are more valuable for a user;
(2) a relevant result is valuable to the user only when it is first

seen;
(3) within a grid of results, it is preferable to have relevant

results close to the top-left corner
(4) it is preferable that relevant items are immediately visible to

the user or can be made visible with few user actions
In order to account for this set of assumptions, we propose to

extend the metric in the following way:

2𝐷𝐶𝐺 =

𝑣∑
𝑖=1

ℎ∑
𝑗=1

𝑔𝑎𝑖𝑛(𝑖, 𝑗) · 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (𝑖, 𝑗)

As in the one-dimensional version, the 𝑔𝑎𝑖𝑛 function is responsi-
ble for rewarding highly relevant results, according to assumptions
(1) and (2). The 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 function, instead, should account for the
penalty related to the position and number of user actions, accord-
ing to assumptions (3) and (4).

Inspired by the one-dimensional version, we fix 𝑔𝑎𝑖𝑛(𝑖, 𝑗) =

2𝑟𝑒𝑙 (𝑖, 𝑗) − 1. Instead, the 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 will depend on the position in
the layout, allowing ample freedom on how to define it in different
use cases.

The normalized version of this metric, N2DCG will be defined
as as 𝑁2𝐷𝐶𝐺 = 2𝐷𝐶𝐺/𝐼2𝐷𝐶𝐺 . I2DCG will be the 2DCG of the
ideal ranking. In a single list setting the ideal ranking is the list
which contains the relevant items in decreasing relevance from
the beginning of the list. In the generalized two-dimensional lay-
out it contains the user’s most relevant items, ranked according

to decreasing relevance in positions with decreasing position dis-
count. The ideal ranking meets the following constraints: for any
pair of cells (𝑖, 𝑗), (𝑘, 𝑙) of the matrix, 𝑔𝑎𝑖𝑛(𝑖, 𝑗) ≥ 𝑔𝑎𝑖𝑛(𝑘, 𝑙) if
𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (𝑖, 𝑗) > 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (𝑘, 𝑙).

Relevance. As stated in assumption (2), a relevant item is valuable
for the user only when it is first encountered. This means that if a
relevant item appears multiple times, each in a different carousels,
it should be considered as relevant only in its best position. We
define such position as the one with the highest discount. Function
𝑟𝑒𝑙 (𝑖, 𝑗) should be modified accordingly.

Single List Discount. It is possible to represent in this formulation
the traditional single list DCG by calculating the position of cell in
coordinates 𝑖, 𝑗 if all carousels lists would be concatenated:

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑠𝑖𝑛𝑔𝑙𝑒𝐿𝑖𝑠𝑡 (𝑖, 𝑗) = (𝑙𝑜𝑔2 ((𝑖 − 1) · ℎ + 𝑗 + 1))−1

As previously mentioned, this formulation is not grounded in a
realistic scenario because it does not reflect the user behaviour (see
Figure 4a), therefore we argue it should not be applied.

Golden Triangle Discount. In order to account for the golden
triangle behaviour, as per assumption (3), the position discount
should decrease as the distance of the cell from the top-right corner
increases:

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 (𝑖, 𝑗) = (𝑙𝑜𝑔2 (𝛼 · 𝑖 + 𝛽 · 𝑗))−1

The coefficients 𝛼 , 𝛽 are two weights that can be used to account
for different types of user behaviors. For instance, let us assume
a scenario where users are more inclined to explore the vertical
dimension. In this case, 𝛼 should be set to a low value in order to
penalize less the vertical dimension. In order to make the discount
start from 1, 𝛼 and 𝛽 should be ≥ 1 since the base of the logarithm
used is 2. Notice that this is true only because we are extending a
logarithmic discount function. For other discount functions [17, 28]
the constraints can change.

The resulting discount is shown in Figure 4b (we set 𝛼 = 𝛽 = 1
for simplicity).

User Actions Discount. Lastly, in order to account for assump-
tion (4) the position discount should decrease the more actions are
required by the user to make that position visible. In a carousel
interface there is an initial rectangular portion of the recommen-
dations that are immediately shown to the user. We refer to the
number of items visible as 𝑖𝑛𝑖𝑡ℎ and to the number of carousels
visible as 𝑖𝑛𝑖𝑡𝑣 , see Figure 5. In order to reveal more items, the user
needs to perform a certain action, i.e., click on a desktop, swipe
on mobile devices. Each of these actions will reveal a certain num-
ber of new items within the currently visualized recommendation
lists. Different platforms and devices will correspond to different
swipe steps, i.e., the number of items that will be revealed after a
single swipe. We will call this quantity 𝑠𝑡𝑒𝑝ℎ ∈ {1, 2, . . . , 𝑖𝑛𝑖𝑡ℎ}. For
example, on Netflix every click will replace all items displayed on
the clicked carousel, in which case 𝑠𝑡𝑒𝑝ℎ = 𝑖𝑛𝑖𝑡ℎ . The same princi-
ple holds for the vertical dimension, where the user can navigate
performing actions that will each display 𝑠𝑡𝑒𝑝𝑣 new carousels.

Based on this definition, we now add to the triangle penalty a
term to account for the number of actions that the user will need
to perform in order to visualize the item. To do so we define some

3



1 2 3 4 5 6
Recommendation position

1
2

3
4

5
6

C
ar

ou
se

l p
os

iti
on

(a) Single list.

1 2 3 4 5 6
Recommendation position

1
2

3
4

5
6

C
ar

ou
se

l p
os

iti
on

(b) Golden triangle behaviour.

1 2 3 4 5 6
Recommendation position

1
2

3
4

5
6

C
ar

ou
se

l p
os

iti
on

(c) Golden triangle and user actions penalty.

Figure 4: A visual comparison of the two-dimensional penalty function under different assumptions. Figure 4a refers to
carousels concatenated in a single list. The other figures refer to the two-dimensional penalty which accounts for the golden
triangle behaviour only, see Figure 4b as well as the number of user actions, see Figure 4c.

...

...

...

...

...

Figure 5: An example interface where 3 carousels, with 4
items each, are visible. A horizontal swipe reveals 4 items,
while a vertical swipe reveals one additional carousel.

auxiliary functions. The first one is used to check whether at least a
user action, i.e., swipe, is needed to visualize that item in a certain
position 𝑝 given that the interface initially shows 𝑖𝑛𝑖𝑡 positions:

isSwipeNeeded(𝑝, 𝑖𝑛𝑖𝑡) =
{

1, if 𝑝 − 𝑖𝑛𝑖𝑡 > 0
0, otherwise

Then, we define a function to count the number of actions needed
to visualize an item, given that each action shows 𝑠𝑡𝑒𝑝 positions:

swipes(𝑝, 𝑖𝑛𝑖𝑡, 𝑠𝑡𝑒𝑝) = isSwipeNeeded(𝑝, 𝑖𝑛𝑖𝑡) ·
⌈
𝑝 − 𝑖𝑛𝑖𝑡

𝑠𝑡𝑒𝑝

⌉
In the particular case where 𝑖𝑛𝑖𝑡 = 𝑠𝑡𝑒𝑝 , calculating the number of
swipes becomes simpler:

swipes(𝑝, 𝑠𝑡𝑒𝑝) =
⌊

𝑝

𝑠𝑡𝑒𝑝

⌋
The final discount will account for both the triangle discount

and the number of user actions, as previously defined:

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑖, 𝑗) = (𝑙𝑜𝑔2 (𝛼 · 𝑖 + 𝛽 · 𝑗 + 𝛾 · swipes(𝑖, 𝑖𝑛𝑖𝑡𝑣, 𝑠𝑡𝑒𝑝𝑣))
+ 𝜆 · swipes( 𝑗, 𝑖𝑛𝑖𝑡ℎ, 𝑠𝑡𝑒𝑝ℎ))−1

Notice that this formulation accounts for both vertical and hori-
zontal swipes. The coefficients 𝛼 , 𝛽 , 𝛾 , 𝜆 are four positive weights
that can be used to account for different types of user behaviors.
The first two weights (𝛼 and 𝛽) control the general penalization of
the vertical and horizontal dimensions, respectively. As we previ-
ously said, they should be ≥ 1 in order for the total discount to start
from 1. Controlling 𝛾 and 𝜆, instead, it is possible to penalize more
or less the user actions needed to reveal a certain item. For example,
it could be that items presented together in the same carousel have
a similar probability of interaction (see the first 10 elements of the
first carousel in Figure 3). Hence, the horizontal dimension should
be penalized less. Another possibility is that, on a desktop device,
the horizontal swipe done with a mouse click will have a higher
weight than the same swipe done with a touch on a mobile device.

For illustrative purposes, let us consider a possible scenario for
a mobile device, where the screen contains 4 carousels and 3 rec-
ommendations each. We set the horizontal and vertical steps to
1, 𝛼, 𝛽,𝛾, 𝜆 are set to 1 as well. The resulting discount is shown in
Figure 4c.

4 EXPERIMENTS
In this section we provide an example of the different behaviour
of NDCG and N2DCG in an offline experimental scenario. We con-
sider a setting where given a set of recommendation models and
a certain number of carousels, the goal is to select which models
to use to generate each carousel. We show that the two metrics
yield to different carousel layouts. In order to represent a scenario
where a carousel interface would be used, we selected the widely
known movie recommendations dataset MovieLens10M dataset [10],
containing 70k users, 10k items and 10M ratings.

The set of models that can be selected, i.e., M, contains sev-
eral simple and widely known models that have shown to provide
competitive results in recent evaluations [8]. For Non-Personalized
models we selected a TopPopular recommender. As KNN models

4



we included ItemKNN [23] and UserKNN [24], both computing the
similarity with cosine and shrinkage. We included the Graph-based
models P3𝛼 [5] and RP3𝛽 [20], which define a bipartite graph of
users and items and simulate a random walk. We added various Ma-
trix Factorization models, some developed for explicit interactions:
PureSVD [6], FunkSVD [8] and Non-negative MF (NMF) [4]; as well
as others developed for implicit interactions: MF BPR [21], IALS
[12]. We included the widely known Item-Based machine learning
models SLIM [19], SLIM BPR and the more recent EASE𝑅 [25]. Fi-
nally, we included the Content-based model ItemKNN CBF, which
computes the item similarities from item features. using cosine
similarity with shrinkage.

We split the data by randomly selecting 80% of interactions for
the training set and 10% for validation and test set. Each model was
optimized on the validation data, following the best practices and
value ranges reported in [8], using a Bayesian search with 50 cases.

Since the purpose of this paper is not to propose an algorithm
for the selection of carousels but to show that the two metrics
lead to different results, we rely on a simple greedy strategy. At
the beginning the page is empty and all candidate algorithms are
evaluated independently on the validation data. The model with
the best recommendation quality is selected as first carousel. The
process repeats for the following carousels, however, in this case,
the candidate model will be evaluated by taking into account all
the previous carousels. According to the definition of relevance
provided in Section 3, a correct recommendation of an item by
the candidate model may overtake another of the same item in a
previous carousels if it has a better position discount. For example,
a correct recommendation at the end of the second carousel could
be overtaken by the same recommendation but at the beginning of
the third carousel, if it has a better position discount.

We repeated this procedure first optimizing NDCG, and then
optimizing N2DCG. We consider a hypothetical interface with a
total of 6 carousels, each composed of 10 items. The interface will
initially show 3 carousels and 2 items. The user can display 1 addi-
tional item in a given carousel with each horizontal swipe and 1 new
carousel with a vertical swipe. For this interface, we set 𝛼 = 𝛽 = 1
and 𝛾 = 𝜆 = 2, in order to penalize more the swipes.

The resulting layouts are shown in Table 1. As we can see, the
layouts have almost completely different orders of the chosen algo-
rithms. For instance, optimizing N2DCG results in selecting SLIM as
the first carousel, while the same algorithm was selected at the bot-
tom of the layout that optimizes one-dimensional NDCG. UserKNN
instead was the first algorithm when optimizing NDCG, but it is
only the third carousel during N2DCG optimization.

Notice also how the 6 algorithms selected in both procedures are
the same, only the order changes. Indeed, it is expected that NDCG
and N2DCG will not produce completely different layouts but will
differ the longer and more pronounced the effects of user actions
become.

5 CONCLUSIONS
In this paper we have described a user interface with multiple
carousels, typical of movie-on-demand and music streaming ser-
vices, and based on its characteristics proposed an extended version

Optimizing NDCG Optimizing N2DCG

UserKNN SLIM
FunkSVD FunkSVD

NMF UserKNN
IALS MF BPR

MF BPR NMF
SLIM IALS

Table 1: Layouts obtained optimizing NDCG and N2DCG.

of the widely used NDCG metric. The proposed formulation ac-
counts for the known user behaviour of exploring the pages not
one row at a time but focusing on the top-left corner and then nav-
igating in both directions. The proposed formulation also allows to
penalize correct recommendations that are only visible to the user
after performing actions. Lastly, we show that the two metrics can
lead to the selection of a different carousel layout. Future works
include validating the proposed metric with user studies as well as
applying it to select the optimal carousel layout, by defining which
is the best carousel to put in a certain position or which is the best
ordering of a given set of carousels. Also, further studies can be
done on different gain and discount functions, similar to previous
research works conducted on the one-dimensional DCG.

REFERENCES
[1] Walid Bendada, Guillaume Salha, and Théo Bontempelli. 2020. Carousel Per-

sonalization in Music Streaming Apps with Contextual Bandits. In RecSys 2020:
Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, Sep-
tember 22-26, 2020, Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M.
Daly, Li Chen, Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.).
ACM, 420–425. https://doi.org/10.1145/3383313.3412217

[2] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient
descent. In Machine Learning, Proceedings of the Twenty-Second International
Conference (ICML 2005), Bonn, Germany, August 7-11, 2005 (ACM International
Conference Proceeding Series), Luc De Raedt and Stefan Wrobel (Eds.), Vol. 119.
ACM, 89–96. https://doi.org/10.1145/1102351.1102363

[3] Flavio Chierichetti, Ravi Kumar, and Prabhakar Raghavan. 2011. Optimizing two-
dimensional search results presentation. In Proceedings of the Forth International
Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China,
February 9-12, 2011, Irwin King, Wolfgang Nejdl, and Hang Li (Eds.). ACM, 257–
266. https://doi.org/10.1145/1935826.1935873

[4] Andrzej Cichocki and Anh Huy Phan. 2009. Fast Local Algorithms for Large Scale
Nonnegative Matrix and Tensor Factorizations. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 92-A, 3 (2009), 708–721. https://doi.org/10.1587/transfun.
E92.A.708

[5] Colin Cooper, Sang-Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. 2014. Random
walks in recommender systems: exact computation and simulations. In 23rd
International World Wide Web Conference, WWW ’14, Seoul, Republic of Korea,
April 7-11, 2014, Companion Volume, Chin-Wan Chung, Andrei Z. Broder, Kyuseok
Shim, and Torsten Suel (Eds.). ACM, 811–816. https://doi.org/10.1145/2567948.
2579244

[6] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
recommender algorithms on top-n recommendation tasks. In Proceedings of the
2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain,
September 26-30, 2010, Xavier Amatriain, Marc Torrens, Paul Resnick, and Markus
Zanker (Eds.). ACM, 39–46. https://doi.org/10.1145/1864708.1864721

[7] Ehtsham Elahi and Ashok Chandrashekar. 2020. Learning Representations of
Hierarchical Slates in Collaborative Filtering. In RecSys 2020: Fourteenth ACM
Conference on Recommender Systems, Virtual Event, Brazil, September 22-26, 2020,
Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim
Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, 703–707. https:
//doi.org/10.1145/3383313.3418484

[8] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach.
2021. A Troubling Analysis of Reproducibility and Progress in Recommender
Systems Research. ACM Trans. Inf. Syst. 39, 2, Article 20 (Jan. 2021), 49 pages.
https://doi.org/10.1145/3434185

5

https://doi.org/10.1145/3383313.3412217
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1935826.1935873
https://doi.org/10.1587/transfun.E92.A.708
https://doi.org/10.1587/transfun.E92.A.708
https://doi.org/10.1145/2567948.2579244
https://doi.org/10.1145/2567948.2579244
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1145/3383313.3418484
https://doi.org/10.1145/3383313.3418484
https://doi.org/10.1145/3434185


[9] Alois Gruson, Praveen Chandar, Christophe Charbuillet, James McInerney,
Samantha Hansen, Damien Tardieu, and Ben Carterette. 2019. Offline Evaluation
to Make Decisions About PlaylistRecommendation Algorithms. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining,
WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019, J. Shane Culpep-
per, Alistair Moffat, Paul N. Bennett, and Kristina Lerman (Eds.). ACM, 420–428.
https://doi.org/10.1145/3289600.3291027

[10] F. Maxwell Harper and Joseph A. Konstan. 2016. The MovieLens Datasets:
History and Context. ACM Trans. Interact. Intell. Syst. 5, 4 (2016), 19:1–19:19.
https://doi.org/10.1145/2827872

[11] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John Riedl.
2004. Evaluating collaborative filtering recommender systems. ACM Trans. Inf.
Syst. 22, 1 (2004), 5–53. https://doi.org/10.1145/963770.963772

[12] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In Proceedings of the 8th IEEE International Conference
on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy. IEEE Computer
Society, 263–272. https://doi.org/10.1109/ICDM.2008.22

[13] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluation methods for retriev-
ing highly relevant documents. In SIGIR 2000: Proceedings of the 23rd Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, July 24-28, 2000, Athens, Greece, Emmanuel J. Yannakoudakis,
Nicholas J. Belkin, Peter Ingwersen, and Mun-Kew Leong (Eds.). ACM, 41–48.
https://doi.org/10.1145/345508.345545

[14] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Trans. Inf. Syst. 20, 4 (2002), 422–446. https://doi.org/10.
1145/582415.582418

[15] Kalervo Järvelin, Susan L. Price, Lois M. L. Delcambre, and Marianne Lykke
Nielsen. 2008. Discounted Cumulated Gain Based Evaluation of Multiple-Query
IR Sessions. In Advances in Information Retrieval , 30th European Conference on
IR Research, ECIR 2008, Glasgow, UK, March 30-April 3, 2008. Proceedings (Lecture
Notes in Computer Science), Craig Macdonald, Iadh Ounis, Vassilis Plachouras,
Ian Ruthven, and Ryen W. White (Eds.), Vol. 4956. Springer, 4–15. https://doi.
org/10.1007/978-3-540-78646-7_4

[16] Yvonne Kammerer and Peter Gerjets. 2010. How the interface design influences
users’ spontaneous trustworthiness evaluations of web search results: comparing
a list and a grid interface. In Proceedings of the 2010 Symposium on Eye-Tracking
Research & Applications, ETRA 2010, Austin, Texas, USA, March 22-24, 2010, Car-
los Hitoshi Morimoto, Howell O. Istance, Aulikki Hyrskykari, and Qiang Ji (Eds.).
ACM, 299–306. https://doi.org/10.1145/1743666.1743736

[17] Evangelos Kanoulas and Javed A. Aslam. 2009. Empirical justification of the gain
and discount function for nDCG. In Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, Hong Kong, China, November
2-6, 2009, David Wai-Lok Cheung, Il-Yeol Song, Wesley W. Chu, Xiaohua Hu, and
Jimmy J. Lin (Eds.). ACM, 611–620. https://doi.org/10.1145/1645953.1646032

[18] Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule,
Mario Scriminaci, and Paolo Cremonesi. 2020. ContentWise Impressions: An
Industrial Dataset with Impressions Included. In CIKM ’20: The 29th ACM
International Conference on Information and Knowledge Management, Virtual
Event, Ireland, October 19-23, 2020, Mathieu d’Aquin, Stefan Dietze, Claudia
Hauff, Edward Curry, and Philippe Cudré-Mauroux (Eds.). ACM, 3093–3100.
https://doi.org/10.1145/3340531.3412774

[19] Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-n
recommender systems. In Proceedings of the 11th IEEE International Conference
on Data Mining (ICDM ’11). 497–506.

[20] Bibek Paudel, Fabian Christoffel, Chris Newell, and Abraham Bernstein. 2017.
Updatable, Accurate, Diverse, and Scalable Recommendations for Interactive
Applications. ACM Trans. Interact. Intell. Syst. 7, 1 (2017), 1:1–1:34. https:
//doi.org/10.1145/2955101

[21] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI 2009,
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
Montreal, QC, Canada, June 18-21, 2009, Jeff A. Bilmes and Andrew Y. Ng (Eds.).
AUAI Press, 452–461. https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=
1&smnu=2&article_id=1630&proceeding_id=25

[22] Mark Sanderson and W. Bruce Croft. 2012. The History of Information Retrieval
Research. Proc. IEEE 100, Centennial-Issue (2012), 1444–1451. https://doi.org/10.
1109/JPROC.2012.2189916

[23] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th
International Conference on World Wide Web (WWW ’01). 285–295.

[24] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001.
Item-based collaborative filtering recommendation algorithms. In Proceedings of
the Tenth International World Wide Web Conference, WWW 10, Hong Kong, China,
May 1-5, 2001, Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen
Zurko (Eds.). ACM, 285–295. https://doi.org/10.1145/371920.372071

[25] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In
The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-
17, 2019, Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J.

McAuley, Ricardo Baeza-Yates, and Leila Zia (Eds.). ACM, 3251–3257. https:
//doi.org/10.1145/3308558.3313710

[26] Chao-Yuan Wu, Christopher V. Alvino, Alexander J. Smola, and Justin Basilico.
2016. Using Navigation to Improve Recommendations in Real-Time. In Proceed-
ings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA,
September 15-19, 2016, Shilad Sen, Werner Geyer, Jill Freyne, and Pablo Castells
(Eds.). ACM, 341–348. https://doi.org/10.1145/2959100.2959174

[27] Qian Zhao, Shuo Chang, F. Maxwell Harper, and Joseph A. Konstan. 2016. Gaze
Prediction for Recommender Systems. In Proceedings of the 10th ACM Conference
on Recommender Systems, Boston, MA, USA, September 15-19, 2016, Shilad Sen,
Werner Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, 131–138. https:
//doi.org/10.1145/2959100.2959150

[28] Ke Zhou, Hongyuan Zha, Yi Chang, and Gui-Rong Xue. 2014. Learning the Gain
Values and Discount Factors of Discounted Cumulative Gains. IEEE Trans. Knowl.
Data Eng. 26, 2 (2014), 391–404. https://doi.org/10.1109/TKDE.2012.252

6

https://doi.org/10.1145/3289600.3291027
https://doi.org/10.1145/2827872
https://doi.org/10.1145/963770.963772
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1145/345508.345545
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1007/978-3-540-78646-7_4
https://doi.org/10.1007/978-3-540-78646-7_4
https://doi.org/10.1145/1743666.1743736
https://doi.org/10.1145/1645953.1646032
https://doi.org/10.1145/3340531.3412774
https://doi.org/10.1145/2955101
https://doi.org/10.1145/2955101
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25
https://doi.org/10.1109/JPROC.2012.2189916
https://doi.org/10.1109/JPROC.2012.2189916
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/2959100.2959174
https://doi.org/10.1145/2959100.2959150
https://doi.org/10.1145/2959100.2959150
https://doi.org/10.1109/TKDE.2012.252

	Abstract
	1 Introduction
	2 Characteristics of a Carousel Setting
	3 Extending one-dimensional NDCG
	4 Experiments
	5 Conclusions
	References

