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ABSTRACT

Voice assistants provide users a new way of interacting with digital
products, allowing them to retrieve information and complete tasks
with an increased sense of control and flexibility. Such products are
comprised of several machine learning models, like Speech-to-Text
transcription, Named Entity Recognition and Resolution, and Text
Classification. Building a voice assistant from scratch takes the
prolonged efforts of several teams constructing numerous models
and orchestrating between components. Alternatives such as using
third-party vendors or re-purposing existing models may be consid-
ered to shorten time-to-market and development costs. However,
each option has its benefits and drawbacks. We present key insights
from building a voice search assistant for Booking.com search and
recommendation system. Our paper compares the achieved perfor-
mance and development efforts in dedicated tailor-made solutions
against existing re-purposed models. We share and discuss our
data-driven decisions about implementation trade-offs and their
estimated outcomes in hindsight, showing that a fully functional
machine learning product can be built from existing models.
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1 INTRODUCTION

Voice assistants have become a prevailing mode of communication
between customers and companies [16, 23]. Today you can pick up
your smart device and utter a request or a command and the device
complies, a thing we wouldn’t have dreamt of in the past. The most
appealing aspect of this feature is the transfer of touch and typing
interfaces into spoken commands, conveying your request in free
language and making the action easy to perform and almost instan-
taneous. For example, you can simply ask a question rather than
navigating a verbose FAQ page, or you can use the voice interface
when you have limited hand dexterity [6]. Using voice assistants in
search and recommendation tasks serves various customer expec-
tations and needs [9]. Introducing a free-form speech input allows
customers to generate unstructured queries, resulting in a complex
input to the search and recommendation systems [17]. The unstruc-
tured form of natural language also allows users to explore different
options in their apps that otherwise would be hidden for the sake
of simplicity of the graphical user interface. The user would have
to reach these options using buttons and menus that involve more
attention and more steps to progress through [10].
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A voice assistant relies on a function v : U — A that maps an
utterance u € U provided by the user to an action a € A which can
be performed by the app, aiming to fulfill the user’s intent which
was presented in the utterance. ! An example for such a mapping
in the groceries domain might be:

v(we are out of milk) = place order for milk

and in the travel domain (which is more relevant in our case) it
might be:

o(I need to book a hotel in Paris) = present a list of hotels in Paris

The actions taken by the Booking.com app may include searching
for accommodation, seeking travel inspiration, asking for help,
amending existing bookings, recommending a property, etc.

The function v may be seen as a chain of auxiliary functions
starting with transforming the raw voice input to text. Only then is
the natural language processed to extract the intent of the user and
the entities mentioned in the text [7, 32]. Eventually, a decision is
made about which action to perform. In practice, the former two
steps are realized using machine learning models.

In creating these machine learning elements, there’s a point of
decision about how the research and development teams implement
them [29]. Options include but are not limited to those shown in
Figure 1.

In-house Pre-trained models Third-party
development (with fine tuning) vendors
More effort | | |
More specific

Less effort
Less specific

Open-source Pre-trained models
frameworks (as-is)

Figure 1: Different options to implementing machine
learning models and the trade-off between effort of
implementation and specificity of the resulting solution.

Each of these options entails implicit costs, whether monetary,
development time, or how well the results fit the business needs.
The items on the left are the ones that are more lengthy and costly in
development time, but on the other hand they should also result in
more specialized models [29]. These costs are difficult to estimate in
advance and might vary widely depending on the kind of problem
to be solved, existing expertise in the workforce, and demand for

!Conversational assistants may have additional context which is out scope for this
paper.
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Figure 2: Voice assistant flow, screens from left to right: Index entry point, Search prompt, Input Query, and Search Results.

high accuracy metrics for the models. Moreover, recent work in the
online travel domain has shown that an improvement in an offline
metric does not necessarily reflect business impact, and requires
online validation via a randomized controlled experiment [4, 11].
At the same time, orchestrating a cascade of machine learning
models requires a supporting software system designed to allow a
combination of business logic with ML-driven decisions [30].

Another concern when choosing one of these options over an-
other revolves around domain-specific data and knowledge [10].
The three leftmost options in Figure 1 require having data available
for training and evaluation, while the other two do not. Having
the same distribution of data when training a model and when
using it for inference is considered good practice, and a significant
mismatch between the two might lead to accuracy metrics being
irrelevant. Knowledge of these distributions in advance might in
some cases lead to using different modeling techniques and better
performance.

Constructing a voice assistant usually require a complex archi-
tecture, and a generous investment in research and development
[12, 18]. At the same time, re-purposing existing ML models to-
wards new applications [26] becomes a popular solution for var-
ious product needs. We suggest to adopt a well-known software
reuse paradigm [8], that allows to achieve high quality and reduce
development time [22] by re-purposing existing machine learning
components or considering using external third-party off-the-shelf
services [5, 27]. In this paper we share insights regarding these
challenges and how decisions were made in the process of devel-
oping a mobile voice assistant (see Figure 2 for an overview of the
product flow). 2

Zapp is available at https://www.booking.com/apps.en-gb.html

Our key contributions are evidence-based comparisons of ded-
icated tailor-made solutions against re-purposing existing mod-
els for different machine learning tasks. The paper demonstrates
how to overcome the lack of in-domain data and to compose a
machine learning product without training new models, all the
while not compromising potential impact. We share and discuss our
data-driven decisions about implementation trade-offs and their
estimated outcomes in hindsight by examining the main four com-
ponents of the system.

Voice assistant systems are composed of a voice-to-text ele-
ment followed by a language understanding element [31]. The
ML pipeline we developed is summarized in the flowchart shown in
Figure 3. The voice-to-text (VIT) system is discussed in Section 2.
For our use case we chose to construct the language understanding
element with three steps: Machine Translation (MT), Named Entity
Resolution (NER), and Text Classification (TC). These steps are dis-
cussed in Section 3, Section 4, and Section 5 respectively. The output
of the last element is fed into a downstream recommender systems
[24]. Section 6 concludes our findings and discusses opportunities
for future research.

Language Understanding

Voice N Machine
to Text Translation

Named Entity | Text
Resolution Classification

Figure 3: Overview of the voice assistant architecture.
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Data source Error word ‘ TPV Kaldi
Conversations  All words 25.25% 28.99%
App commands  All words 45.24% 38.68%
App commands  "booking" 123/;1;;5 1:;/;1;)5
App commands  "cancellation” (étléz/:;g) (2231/;(')78)

Table 1: Comparison of WER for the TPV vs. the Kaldi
model on the adjacent domain and in-domain data-sets.

2 VOICE-TO-TEXT

The first ML-driven element of the pipeline has an utterance as
a waveform as input and outputs transcribed text for the uttered
speech. It is worthwhile discerning how the distribution of inputs
may vary between domains, as it may determine the performance of
pre-trained models versus models that were trained on in-domain
data. For example:

(1) Sampling rate values may be either 8KHz or 16KHz.

(2) Background noises such as mechanical hum and vehicle
noise for car assistants, colleagues chatter for call-centers,
etc.

(3) Accents such as differences in American vs British English.

(4) Word distribution differs in different contexts.

Item 4 in the list is especially relevant as VTT systems use sta-
tistics of words and n-grams to decide their likelihood. Different
domains may exhibit differences in word frequencies that affect
accuracy. Even when disregarding domains, different dialects may
have a similar effect.

We evaluated two options for the VTT element, one is the open-
source framework Kaldi [28] which comes out-of-the-box with
ready-made models and tools to tweak them, and the other is a
third-party vendor (TPV). Prior comparisons between Kaldi and
an off-the-shelf third-party vendor tool [20] have shown higher
accuracy for Kaldi when testing on in-domain data and when the
signal-to-noise ratio is high.

Developing any model without data generated from the end
product produces a classical "chicken or the egg" problem since we
cannot infer data distribution. A common practice in this scenario
is to use data from an adjacent domain or product to train models.
We obtained recordings from customer-service conversations for
bootstrapping. Using an annotation tool built in-house, we collected
ground-truth transcriptions for these conversations and used them
to compare the different models. The metric we used was Word

TPV ‘ Correct
Contact hotel for registration details | reservation
Can I have the information confirmation
Consolation cancellation

Table 2: Examples of domain-specific errors from the TPV
which the Kaldi model got correct.

Error Rate (WER) [25, 33], defined as the edit distance between
ground truth and predicted sentences normalized by the length
of ground truth. This is a common metric used in voice-to-text
systems.

Both TPV and Kaldi allow for the tweaking of their models:
the former receives a set of hint phrases that may appear in the
utterance and the latter allows fine-tuning modular steps in its
VTT pipeline including an acoustic model, a lexicon, and a lan-
guage model. We tweaked both of the alternatives by using our
adjacent-domain data to achieve the lowest WER we could with
either. Kaldi’s out-of-the-box model achieved 45.01% WER, com-
pared to 25.25% WER by the TPV. The effort to tweak Kaldi model
resulted in 28.99% WER, resembling similar comparisons with open-
access datasets [20]. Tweaking TPV resulted in a negligible boost in
performance. At this point, a decision based on currently-available
data was made to use the TPV and defer any additional Kaldi de-
velopment indefinitely.

After releasing the voice assistant feature real-world data was
gathered and annotated, and the two models were reevaluated
based on it. Table 1 reports both evaluations, showing that the
performance is better for the Kaldi model for utterances taken
directly from the product. The same table presents error rates for
specific words in the text, explaining some of the difference in
performance between the two datasets by the higher abundance of
these domain-specific words in the latter. Table 2 shows common
errors by TPV that were transcribed accurately by the Kaldi.

3 MACHINE TRANSLATION

The work described in Section 2 focused on English. When expand-
ing to new markets, the voice assistant is expected to support local
languages. Every new language once again faces the same problems
already discussed in the previous section, and the time and effort
to create the relevant models does not scale well as practically all
stages should be repeated, including data collection and annotations.
Using the TPV allowed us to transcribe numerous languages easily,
but downstream models were all trained using English inputs. Lack
of multilingual training data presented a serious hold-back, which
led us to translate the transcriptions before passing them forward
[13].

An in-house team has been developing in-domain translation
models described in [21]. These models showed consistent results
independent of sentence length, which hints that using it for our
use case is acceptable. We easily interfaced with their service and
served multiple languages with nearly zero effort.

The incisive time to enable new languages has proven essential
for testing new markets. Aside from model performance which may
differ for each language, user habits for using voice assistants vary
with country and culture. Presenting the product to users was key
to understanding product-market fit [2, 3].

4 NAMED ENTITY RESOLUTION

Named Entity Recognition (NER) is a Natural Language Processing
(NLP) task that asks the question about a word or a sequence of
words whether they are "a person, a place or a thing". Named Entity
Resolution is a task that asks "what person, place, or thing is it". In
our context, resolution matches a recognized entity to a closed set
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of destinations such as countries, cities, villages, and hotels. Any
human hearing the utterance "I'm looking for a hotel in Amsterdam"
will assume the speaker intends to visit the Dutch city. However,
we are aware that there are different Amsterdams in the United
States, South Africa, and elsewhere. Furthermore, we expect two
entities to be resolved when we fulfill searches for flights, both for
origin and destination.

Entity Resolution is a highly specialized task involving annota-
tion of a substantial amount of in-domain data for both recognition
and resolution sub-tasks [14]. This task is essential for a voice
assistant in the travel domain. However, anything other than us-
ing a ready-made solution would be infeasible and would delay
deployment of the product for a long time.

An in-house team has been developing an Entity Resolution API
based on the FLAIR framework [1] for use in a chat-bot product.
By the time we came to use it for the voice assistant, it was at near-
SOTA performance with more than 90% F1 score for the recognition
task. We performed a qualitative inspection and interfaced with
the APL This has accelerated our time-to-market, allowing us to
present the finalized product to our users quickly.

5 TEXT CLASSIFICATION

In this step of the pipeline, the text is fed into a multi-class classifi-
cation model and converted into enumerated cases to be used by
the client to initiate the response appropriate for the user’s utter-
ance. Some of the cases were treated as templates and fulfilled with

Intents ‘ Prevalence
Pre-book intents 66.9%
Request human agent 8.7%
Check booking status 7.1%
Payments 3.0%
Change booking 1.9%
Other post-book intents 10.0%
Greetings 2.4%

Table 3: Distribution of intents in our annotated data.
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entities resolved from the NER model, for example searching for
an accommodation was fulfilled with the destination.

As a free-form input method, we expected utterances that ad-
dress both searching for an accommodation to book ("pre-book”
intents) and for treating existing bookings ("post-book" intents).
User surveys confirmed that, with a distribution of 50% pre-book
intents, 30% post-book, and the rest are other intents such as greet-
ings and nonsensical queries. This revealed that we have two main
sub-domains to address when building the text classification. Once
again, training any model before collecting any data is not feasible.
To allow product development and eventually lead to data collection
we used two different internal models that serve these features:

e Travel Assistant: a text-input interface used to guide users
through the FAQ on the site and app. Their NLP model maps
text to post-book intents [19]

e Chat bot: the tool described in Section 4. As support to the
NER model, it used a different model to decide whether a
user wants to book a flight or a hotel (or neither).

Interlacing these models using simple rules allowed us to efficiently
serve both pre-book and post-book sub-domains with one client-
facing interface. The logic we used for combining the two into a
single cohesive product is shown in Figure 4. Simple if-else state-
ments based on the two models result in either an action such as
a flight search being conducted, or an FAQ page being opened, or
in giving the user feedback within the voice Ul element asking
for clarification or additional information. We complemented the
process with an exact keyword search, such as credit being mapped
to payment intent, for words we found are significantly correlated
with customer-service intents. coronavirus is yet another exam-
ple for such a keyword, which forwarded users to an explanation
about the COVID-19 situation in regard to their bookings. Keyword
matching works exceptionally well for our use case as the upstream
steps filter out most of the other intents.

After the voice assistant feature was made available to the cus-
tomers, we collected data directly from their interactions and an-
notated it. Intent distribution, excluding 40% of unintelligible utter-
ances, is given in Table 3. We proceeded to build a model to map
text directly to intent using the NLP framework spaCy [15]. The
classification metrics to compare the composite business model to
the spaCy model are shown in Table 4. These two options were
tested in an randomized controlled experiment with two groups,
each exposed to a different text classifier. Measuring The number
of customer service tasks that were handled by representatives
for each of the groups confirmed that the spaCy model results in
a reduction in such human-handled tasks which was statistically
significant.

Intent Composite spaCy
p r p r
Cancel booking | 79% 70% 79% 64%

Change booking | 79% 48% 87% 31%
Payments 46% 50% 52% 75%

Table 4: Per-class precision (p) and recall (r) of topic
classification models on the most common intents.
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6 CONCLUSION

A common perception of the Data Scientists’ work is that their first
order of business is training machine learning models to fit the
specific tasks at hand, starting with data gathering and ending in a
custom model. Conversely, in the first version of the voice assistant
that was released we have not used any machine learning models
custom-made for this product, and none of the models we used
were trained on relevant in-domain data. Instead, we composed the
product from a chain of ready-made models and services.

Our decisions to do so were motivated by data wherever it was ap-
plicable, and by time-to-market considerations otherwise. Though
one might argue that the VT'T decision was wrong as the discarded
model performance on in-domain data was better than the TPV
tool we used, this is a non-issue since the end product has proved
beneficial despite the shortcoming of this element in the chain
of models. Moreover, making the product available to our users -
which would have been blocked without these ready-made models -
is a crucial element in building more accurate models in the future.

Development of the entire end-to-end process took about four
months. From the time already spent on developing models for the
MT, NER, and TC tasks by other teams, and the time spent on the
VTT task and improving on the TC model by our team, we estimate
that the development of the same product from scratch would have
taken approximately two years if taken up by a single team.

Deploying the voice assistant has benefited the company busi-
ness metrics two-fold, both by increasing engagement and reserva-
tions, but also by reducing the work for customer service represen-
tatives, as users found the solutions to their problems more easily
when using the voice free-form interface.

To conclude our observations, we recommend to break down
complex machine learning architectures into atomic sub-tasks. Con-
trary to an initial urge to develop a novel tailor-made solution, we
found that re-purposing existing solutions can often achieve effec-
tive results while efficiently saving development and scaling efforts.
Moreover, reusable system components drive long-term system
alignments and achieve services and organizational synergy.

We invite our peers to be aware of the option of building machine
learning-centered products without ever having to train a single
model, but rather to save valuable time and effort by using the work
already done by peers and colleagues.
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