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ABSTRACT
Recommendation systems are trained on historical rating data ex-
plicitly provided by users. Since users have the freedom to select
what items to rate by themselves, the collected recommendation
datasets typically suffer from selection bias. As a result, recom-
mendation models trained on such biased data perform not well
on unobserved data. Traditional solutions to selection bias such
as data imputation and inverse propensity score are sensitive to
the quality of the additionally introduced imputation model or the
propensity estimation model. In this work, we propose a novel
self-supervised learning (SSL) framework Rating Distribution
Calibration (RDC) to alleviate the negative impacts of selection
bias on recommendation models. In addition to the original training
objective, we introduce a rating distribution calibration loss which
aims to correct the predicted rating distribution of a biased user by
forcing them to be close to that of similar unbiased users. Exten-
sive experiments are conducted on a real-world recommendation
dataset and results show that our proposed framework outperforms
the original model as well as state-of-the-art debiasing approaches
by a significant margin. A detailed parameter sensitivity analysis is
also included to help us understand the influence of the choices of
the hyperparameters on the debiasing performance.
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1 INTRODUCTION
By learning users’ preferences, recommendation systems accurately
find the items or services that they are interested in, which ef-
fectively combats the problem of information overloading. Many
recommendation systems learn users’ preferences for items based
on their historical explicit feedback, such as binary or multi-scale
ratings. However, recent studies have shown that user rating data
suffer from selection bias [2]. Specifically, users can select which
items to rate by themselves. They typically don’t select and rate
items by random, but instead, their selection behaviors follow cer-
tain patterns [11]. For example, some users are more likely to rate
items that they strongly like or dislike. As a result, the ratings
collected under selection bias are not representative enough to
reflect the preferences of users to all items, and thereby mislead
recommendation models to provide biased predictions. Another
equivalent formulation of the selection bias is called the missing-
not-at-random (MNAR) problem. Given that users select which
items to rate by themselves, the unobserved ratings are not miss-
ing randomly. But a desirable recommendation model seeks to
make accurate predictions on all user-item pairs, which can only
be precisely evaluated on missing-at-random (MAR) test data [16].
However, directly training a recommendation model on MNAR
training data leads to defective performances on MAR test data.

Figure 1 shows a simple and intuitive example of selection bias.
Table (a) shows the underlying preferences of six users on six items.
Based on certain selection patterns, the six users select partial items
to rate, which results in the observed user ratings in Table (b), where
the unobserved ratings are denoted as interrogation marks. There
are three types of selection behaviors. First, user A and user D
randomly choose items to rate and their choice is independent of
the underlying rating of an item. Thus, the observed ratings are
MAR. Second, users B and F tend to choose the items they like to rate.
Third, users C and E tend to choose the items they dislike to rate. A
recommendation model trained on such observed ratings tends to
produce accurate predictions for users without selection bias (type

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: An example of selection bias in recommendation systems.

1), and inaccurate predictions for users with selection bias (type 2
and 3), as shown in Table (c). Since the observed ratings of users
A and D are MAR, the data are representative of their preferences.
Then the model can get a comprehensive understanding of their
preferences, so as to provide more accurate predictions. User F and
C are more likely to rate the items they like/dislike, respectively. As
a result, the model tends to predict more positive/negative ratings
for them, which leads to errors in predictions. More extremely,
users B and E only provide ratings to items they like/dislike, and
then the model learns significantly biased preferences and tends to
predict all the items as positive/negative, which leads to very bad
performances.

Traditional methods dealing with selection bias in recommenda-
tion systems are mainly based on two ideas. First, since the collected
training rating data are MNAR, some works propose to include a
data imputation module to estimate the missing data, where heuris-
tic methods [17] and learning-based methods [18] are applied. Sec-
ond, researchers propose to leverage inverse propensity score (IPS)
to reweight training data during training, based on the estimated
probability of observing them. Furthermore, Wang et al. [18] pro-
pose to combine the above two strategies to mitigate selection
bias. Although existing methods alleviated the negative impacts of
selection bias to some extent, the debiasing performances of the
aforementioned two approaches heavily rely on the quality of the
data imputation model and the propensity score estimation model,
which is hard to guarantee in practice [2].

In this paper, we seek to solve the problem of selection bias using
a novel strategy. Recommendation models are typically trained via
supervised learning. The observed rating data with selection bias
provide biased supervision signals, which leads to biased models.
Hence, we need additional debiased signals to correct the model. We
propose an SSL framework to provide such supervision signals by
introducing self-defined learning tasks. Our proposal is primarily
based on the following observations: (1) The degree of selection bias
of different users varies. For example, some users show strong selec-
tion bias when interacting with recommendation systems (e.g. the
user B in Figure 1) while some users have no selection bias and their
rating data are almost missing at random (e.g. the user A in Figure
1). (2) The negative impact of selection bias on the recommendation

model is directly reflected in its predicted rating distribution of a
user. For example, due to the selection bias of user B, the recommen-
dation model predicts a rating distribution (all items are positive)
that is largely deviated from the real distribution (half positive and
half negative). Thus, an intuitive idea for dealing with selection
bias is to introduce an SSL task to correct the predicted rating dis-
tributions of users with selection bias based on the distributions
of similar users without selection bias. Specifically, we iteratively
find the users with less selection bias, which we call “pivot” users,
and force the predicted rating distribution of non-pivot users to be
close to that of their similar pivot users. Without introducing new
models and new data, the SSL task directly regularizes the biased
rating predictions by the contrast between different users and has
been empirically validated to achieve better debiasing performance
compared with competitive baseline approaches. We summarize
our contributions in this work as follows.

• To the best of our knowledge, we first investigate allevi-
ating selection bias in recommendation systems via self-
supervised learning.

• We propose a novel SSL-based framework Rating Distribu-
tionCalibration (RDC) to reduce the influence of selection
bias in training recommendation models.

• We empirically evaluate our methods on one public dataset.
The experimental results demonstrate the superiority of our
proposed model over state-of-the-art baselines. We also in-
clude extensive experiments to analyze the sensitivity of the
hyper-parameters in our framework.

The remainder of this paper is organized as follows. First, in
Section 2, we review the related works. Then, we will present some
preliminary knowledge in Section 3. Next, we describe the proposed
framework in detail in Section 4. Then, we carry out our experimen-
tal setups and results with discussions in Section 5. Finally, Section
6 concludes the work with possible future research directions.

2 RELATEDWORKS
In this section, we go through the related works. We summarize
the latest studies in two research lines which are tied to our work,
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namely, selection bias in recommendation systems and self-supervised
learning.

2.1 Selection Bias in Recommendation Systems
As an important application in artificial intelligence (AI), recom-
mendation systems are required to be unbiased [1, 8]. Selection
bias is one kind of important bias that needs to be eliminated [2].
Previous studies on selection bias in recommendation tackle this
problem on two families of methods. The first category is known
as data imputation. Given that selection bias results in a biased
data missing mechanism, Steck [17] propose a heuristic strategy
to impute missing rating data to alleviate the impacts of such bias.
Specifically, they use a constant value as the imputed ratings and
optimize the recommendation model with a weighted objective
function where the contributions of missing values are adaptively
down-weighted. Based on the assumption that the probability of
observing a rating depends on its underlying value, Hernández-
Lobato et al. [6] propose to jointly learn an MF-based complete data
model as well as an MF-based missing data model to explain the
generation of complete rating data and the data missing mechanism.
With the guidance of the data missing model, the complete data
model learns unbiased and more accurate predictions. The second
category is called inverse propensity scoring. Since the ratings that
are less likely to be observed are underrepresented in biased data,
we can up-weight these ratings during training as a means of com-
pensation. Schnabel et al. [16] propose two methods to estimate
the propensity score of a rating (i.e., the probability of observing
this rating), and utilize the inverse propensity score (IPS) to weigh
the corresponding loss term of that rating.

Based on the above two categories of debiasing methods, Wang
et al. [18] propose a novel framework to integrate them in a dou-
bly robust manner to overcome the high-bias issue of the data
imputation methods and the high-variance issue of the IPS-based
methods. Moreover, based on this doubly robust framework, Wang
et al. [19] further propose a framework called Learning to Debias
(LTD). In the LTD, a propensity estimation model is introduced to
learn more accurate propensity scores. The propensity estimation
model is optimized according to the performance of the resulting
rating model on a small amount of unbiased data. However, the
aforementioned two types of debiasing methods, as well as their
combination, heavily rely on the quality of the data imputation
model or the propensity estimation model, which is hard to guaran-
tee in practice [2]. In contrast, our method avoids the introduction
of additional models but only develops a novel SSL task based on
the original model and data, which makes our method more robust
than the existing methods.

2.2 Self-supervised Learning
As an emerging technology for representation learning via unla-
beled data, self-supervised learning (SSL) has drawn increasing
attention from various communities. The principle idea of SSL is
to improve the generalization ability of the model by training it
on auxiliary tasks where no human-annotated labels are needed.
In the computer vision (CV) field, various SSL techniques are de-
veloped for learning high-quality image representations. Doersch
et al. [3] first propose to predict the relative locations of image

patches. Following this line of research, Noroozi and Favaro [12]
design a pretext task called Jigsaw Puzzle. More types of pretext
tasks have also been investigated, such as image rotation [4], im-
age inpainting [14], image colorization and motion segmentation
prediction Pathak et al. [13]. SSL is also used in the graph domain
to enhance representation learning with full exploitation of unla-
beled data [7]. In the domain of recommendations, there are few
works incorporating SSL. Zhou et al. [20] employ the mutual in-
formation maximization principle to define four auxiliary tasks to
improve sequential recommendation. Liu et al. [9] propose a graph
contrastive learning to improve the generalization ability of graph
neural network (GNN) based recommendation models.

3 PRELIMINARIES
In this section, we introduce some preliminary knowledge about the
problem under study. We first state the problem, and then describe
two common recommendation models that will be studied in our
research.

3.1 Problem Statement
In general, recommendation models seek to predict the “rating” or
“preference” a user would give to an item [15]. Specifically, recom-
mendation models have various forms, including rating models,
which predict a binary or numeric rating of a user to an item; and
ranking models, which sort a set of items according to a user’s
preference. Both these two kinds of recommendation models suffer
from selection bias in the training data. In this work, we focus on
the former type, and note that our method and conclusion can also
be extended to the latter type.

Let U = {𝑢1, ..., 𝑢𝑁 } be a set of users, I = {𝑖1, ..., 𝑖𝑀 } be a set of
items. A rating model can be viewed as a functionM : (𝑢, 𝑖) → 𝑟𝑢,𝑖
that maps a pair of user and item to a numeric rating. Let R =

{(𝑢, 𝑖, 𝑟𝑢,𝑖 ) : (𝑢, 𝑖) ∈ U×I} be the underlying full rating set, where
𝑟𝑢,𝑖 is the rating of user 𝑢 to item 𝑖 . Given a set of observed rating
data Ro ⊂ R, we seek to find a rating modelM that can make an
accurate prediction R̂ on the full rating set R, which is evaluated
by the prediction error:

E = E(R̂,R) = 1
|R |

∑
(𝑢,𝑖,𝑟𝑢,𝑖 ) ∈R

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2

In practice, the full ratings R is not available since we cannot collect
the true ratings of each user to each item. Instead, we can evaluate
the prediction error of amodel on a collectedMAR test setRtest ⊂ R
as an unbiased estimation of that on the full rating matrix:

E ≈ Etest = E(R̂test,Rtest) = 1
|Rtest |

∑
(𝑢,𝑖,𝑟𝑢,𝑖 ) ∈Rtest

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2

It can be shown that Etest is an unbiased estimation of E. The
detailed proof can be found in Appendix A.

Formally, given a set of observed rating data Ro, the problem is
to find an optimal rating modelM that can minimize the prediction
error Etest on the MAR test set Rtest. However, due to selection
bias, the observed rating data are MNAR, which leads rating models
trained on them to perform badly on the MAR test data. Following
the work [19], we assume that we have a small amount of MAR
ratings which can provide guidance for us to fix the bias of the
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model trained with a large MNAR dataset. Thus, the problem can
be formulated as – given a set of observed ratings Ro = Ro

MNAR ∪
Ro
MAR, where

���Ro
MNAR

��� ≫ ���Ro
MAR

���, we seek to find a rating model
M that minimizes the prediction error Etest on Rtest.

3.2 Rating models
The last section describes the general problem of building an unbi-
ased rating model regardless of its specific architecture. In practice,
different types of rating models can be used. In this section, we
introduce two common rating models: matrix factorization (MF)
and neural factorization machine (NFM) [5]. We will apply these
two models as examples to show how they are debiased under our
proposed RDC framework. Note that our framework can be incor-
porated with any rating model. In the rest of the paper, we refer
to the rating model as the “base” model, in order to distinguish it
from the debiasing model.

The MF model is parameterized by a user feature matrix 𝑃 ∈
R𝑁×𝐾 , an item feature matrix𝑄 ∈ R𝑀×𝐾 , and bias vectors for users
𝑏𝑢 ∈ R𝑁 and items 𝑏𝑖 ∈ R𝑀 to predict the full ratings 𝑅:

𝑟𝑢,𝑖 =

𝐾∑
𝑘=1

𝑃𝑢𝑘𝑄𝑘𝑖 + 𝑏𝑢 + 𝑏𝑖

The NFM model includes an embedding layer that maps a user-
id 𝑢 or an item-id 𝑖 to their corresponding embeddings 𝑒𝑢 and 𝑒𝑖 ,
respectively. Then a bi-interaction layer calculates the element-wise
dot product of 𝑒𝑢 and 𝑒𝑖 , which is then passed through several layers
of feed-forward neural networks to predict the numeric rating 𝑟𝑢,𝑖 .

4 THE PROPOSED FRAMEWORK
In this section, we detail our proposed SSL framework RDC. We
first present the overview of the RDC framework, and then describe
the SSL task designed for rating distribution calibration. Finally, we
present the optimization method.

4.1 Overview
The original rating model is optimized via supervised learning by
minimizing the mean square error (MSE) between the predicted
ratings and the observed ratings:

L𝑀 =
1

|Ro |
∑

(𝑢,𝑖,𝑟𝑢,𝑖 ) ∈Ro

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2 + 𝜆 · 𝑅𝑒𝑔(𝜃 ) (1)

where 𝑅𝑒𝑔(𝜃 ) indicates the regularization term of the model param-
eters 𝜃 , and 𝜆 is a hyper-parameter for adjusting the weight of the
regularization term.

As discussed in the introduction, the selection bias leads a rat-
ing model trained on the vanilla MSE loss to predict biased rating
distributions for users. In RDC, we seek to alleviate the negative
impacts of selection bias on the rating model by calibrating the
predicted rating distribution of the users, and alleviate the impacts
by an additional SSL task. Given that different users show different
levels of selection bias, and users with less/more selection bias can
achieve more/less accurate predicted rating distribution, respec-
tively, we can use the rating distributions of the former as standards
to calibrate that of the latter. Formally, we define the users who

leave ratings in a MAR way (i.e., users with less selection bias) as
“pivot” users, and accordingly, the users who provide ratings in
an MNAR way (i.e., users with more selection bias) as “non-pivot”
users. Hereby, we design an SSL framework which (1) extracts the
rating distribution features from the users; (2) dynamically finds
similar pivot users for non-pivot users by comparing their rating
distributions; and (3) calibrates the rating distributions of non-pivot
users with their similar pivot users as an SSL task.

4.2 The SSL task
Rating Distribution Feature Extraction. We denote the pre-
dicted ratings of a user 𝑢 to all items 𝐼 = {𝑖1, . . . , 𝑖𝑀 } as r̂𝑢 =

{𝑟𝑢1 , . . . , 𝑟𝑢𝑀 }. We define an aggregation function 𝑔(r̂𝑢 ) that maps
the predicted ratings r̂𝑢 to its distribution features. In order to
ensure distribution features to be differentiable to the model param-
eters so that the SSL objective can be optimized via gradient back-
propogation, we cannot use heuristic discrete distribution features
like the frequency distribution g𝑢 = 𝑔(r̂𝑢 ) =

{
Pr [𝑟𝑢 = 𝑟 ]

}𝑅
𝑟=1 or

the statistical features g𝑢 = 𝑔(r̂𝑢 ) = {mean(r̂𝑢 ), var(r̂𝑢 )}. Instead,
we propose a smooth distribution feature function as an approxi-
mation of the distribution density of the predicted ratings r̂𝑢 :

g𝑢 = 𝑔(r̂𝑢 ) =
[
𝑓 (1) (r̂𝑢 ), . . . , 𝑓 (𝐾) (r̂𝑢 )

]
,

where 𝑓 (𝑘) (r̂𝑢 ) =
1
𝑀

𝑀∑
𝑖=1

1
1 + exp−𝜏 (𝑟𝑢,𝑖−𝑘)

, 𝑘 ∈ {1, . . . , 𝐾}

where 𝐾 indicates the number of features and 𝜏 is the temperature
value that controls the smoothness of the function.

Finding Pivot Users. As shown in the introduction, a user with
less selection bias is able to obtain more accurate predictions on
MAR data. Thus, we propose to choose pivot users based on their
performances on the observed MAR rating set Ro

MAR. In iteration
𝑛, the pivot user set P(n)+ is defined as the users whose MAE on the
MAR rating set Ro

MAR is less than a threshold 𝑡 , which serves as a
hyper-parameter:

P(n)+ = {𝑢 ∈ U : MAE
(
𝑢;Ro

MAR
)
< 𝑡} (2)

where MAE(𝑢;Ro
MAR) is the mean absolute error (MAE) of user 𝑢

on the MAR rating set Ro
MAR.

Thereby we can have the non-pivot user set P(n)− = 𝐼/P(n)+ . Given
a non-pivot user 𝑢 ∈ P(n)− , we compare the rating distribution
similarity between 𝑢 and each pivot user and try to find the closest
one 𝑢∗:

𝑢∗ = argmin
𝑢′∈P(n)

+
| |g𝑢′ − g𝑢 | |22 (3)

where | | · | |2 indicates the 𝑙2-norm.
Rating Distribution Calibration. The SSL loss is defined as

follows to forces the distribution features of the non-pivot users to
be close to that of their similar pivot users:

L𝑆𝑆𝐿 =
1

|P(n)− |

∑
𝑢∈P(n)

−

| |g𝑢∗ − g𝑢 | |22 (4)
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Algorithm 1: RDC optimization

Input: Observed MNAR rating set Ro
MNAR = {𝑢𝑡 , 𝑣𝑡 , 𝑟𝑡 }𝑁1

𝑡=1, MAR
training rating set Ro

MAR = {(𝑢𝑡 , 𝑣𝑡 , 𝑟𝑡 ) }𝑁2
𝑡=1, validation

rating set𝑉 = {𝑢𝑡 , 𝑣𝑡 , 𝑟𝑡 } |𝑉 |
𝑡=1, 𝑝 , 𝜏 , 𝐾 , 𝜆, 𝜇, 𝑡

Output: a rating model M
1 Initialize the rating model M by pre-training it on the observed

rating set Ro = Ro
MNAR ∪ Ro

MAR.
2 repeat
3 Evaluate the performances of all the𝑀 users on Ro

MAR, to
obtain the current pivot user set P(n)

+ and the non-pivot user
set P(n)

−
4 For each non-pivot user 𝑢 ∈ P(n)

− , find its closest pivot user
𝑢∗ ∈ P(n)

+ via Eq 3
5 Calculate the SSL loss L𝑆𝑆𝐿 in Eq 4
6 Calculate the MSE loss L𝑀 in Eq 1
7 UpdateM by optimizing the overall loss L in Eq 5
8 Evaluate the rating model M on the validation rating set𝑉
9 until the performance ofM on𝑉 doesn’t improve for consecutive

𝑝 epochs;

4.3 Optimization
With the updating of the rating model, the set of the pivot and
non-pivot users are also changing. We empirically find that with
the improvement of the rating model’s performance, more and
more users can achieve better performance on the MAR rating
set, and thus, some non-pivot change to pivot users. Hence, we
alternatively update the rating model and divide the pivot user set
during the optimization process, so as to leverage the increasing
number of pivot users to provide more guidance for debiasing. The
optimization algorithm is presented in Algorithm 1.

First, we initialize the rating model by pre-training it on the
original MSE objective function (Eq 1), which has been empirically
shown to accelerator the convergence of the whole framework
(line 1). Next, we iteratively update the RDC framework for 𝑁
epochs (from line 2 to line 7). In each iteration, we first evaluate
the performances of all the 𝑀 users on the MAR training set, to
obtain the current pivot user set P(n)+ and non-pivot user set P(n)−
(line 3). Then, for each non-pivot user, we find its most similar pivot
user (line 4). Then, we calculate the SSL loss L𝑆𝑆𝐿 (line 5). Then
we obtain the overall loss L as follows to combine the original
objective function and the SSL loss (Line 6 in Algorithm 1):

L = L𝑀 + 𝜇 · L𝑆𝑆𝐿 (5)

where 𝜇 is a hyper-parameter for weighting the contribution of the
SSL loss. Afterward, we update the rating modelM by optimizing
the overall loss L (line 7). Finally, we evaluate the performance
of the current rating model on the validation set. The iteration
will stop when the validation performance doesn’t improve for
consecutive 𝑝 epochs.

5 EXPERIMENT
In order to validate the performance of our proposed framework,
we conduct extensive experiments on a real-world recommenda-
tion dataset. Through the experiments, we seek to answer three
questions:

Table 1: Performance comparison on Yahoo! dataset. In the
table, we report the results averaged over 5 runs with differ-
ent random seeds with the 95% confidence intervals.

Methods
MF NFM

MAE MSE MAE MSE
Vanilla 1.071 ± 0.002 1.461 ± 0.004 1.191 ± 0.006 2.025 ± 0.018
CPT-v 0.914 ± 0.003 1.181 ± 0.004 0.985 ± 0.012 1.527 ± 0.010
IPS 0.877 ± 0.001 1.153 ± 0.003 0.866 ± 0.023 1.211 ± 0.057
HEI 1.158 ± 0.003 1.895 ± 0.005 1.225 ± 0.009 2.117 ± 0.023
DR 0.842 ± 0.001 1.257 ± 0.014 0.841 ± 0.014 1.066 ± 0.016

DR-LTD 0.792 ± 0.001 0.983 ± 0.002 0.802 ± 0.006 1.063 ± 0.011
RDC 0.769 ± 0.003 0.981 ± 0.003 0.790 ± 0.006 0.982 ± 0.003

• RQ1: How does our model perform compared with tradi-
tional recommendationmodels that don’t explicitly deal with
selection bias?

• RQ2: How does our method perform compared with other
representative recommendation models that explicitly deal
with selection bias?

• RQ3: How do the choice of hyper-parameters influence the
performance of our proposed model?

5.1 Dataset
To compare the performance of various methods on mitigating
selection bias, we should evaluate the prediction performance of the
resulting recommendation models on unbiased data (i.e. MAR data).
Thus, we conduct the experiment on a real-world recommendation
dataset with MAR test data.

Yahoo! Dataset. The Yahoo dataset [10] collects the 5-star scale
ratings for 1,000 songs from 15,400 users. In the dataset, there
are 311,704 biased ratings which are rated by all 15,400 users in
a self-selection manner. These ratings make up our training set.
In addition, a subset of 5,400 users are asked to rate 10 randomly
selected songs, which results in 54,000 unbiased ratings as the test
data.

5.2 Baselines
We compare our model with the vanilla recommendation model, as
well as several representative debiasedmodels: CPT-v [10], HEI [17],
IPS [16], DR [18], LTD [19]. A brief introduction of the baselines
can be found in Appendix B.

5.3 Experimental Results
The details of the implementation of our proposed model and the
baselines can be found in Appendix C. The main experimental re-
sults are shown in Table 1. We report the mean-absolute-error
(MAE) and the mean-square-error (MSE) of the rating models
trained under various debiasing approaches on the MAR test data.
We make the following observations.

First, among all the approaches, our RDC achieves the best per-
formance. Compared with the above data imputation or inverse
propensity score based approaches, our SSL framework focuses on
the data themselves and mitigates the selection bias through the
calibration and correction among different users, which avoids the
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heavy dependence on the quality of the imputation model and IPS
estimation model. Thus, it achieves better and more robust debias-
ing performance. Second, the performances of different debiasing
methods are quite various. CPT-v and IPS significantly mitigate the
selection bias and improves the performance of the rating model
by leveraging data imputation and IPS weighting technologies.
DR further improves the performance by combining these two
tricks, which ensures the model’s inference quality when one of the
two components cannot work well. Based on DR, DR-LTD intro-
duces an adaptive propensity score estimation model, which further
strengthens its debiasing ability. Third, our RDC achieves the best
performances on both MF and NFM, which demonstrates that our
debiasing framework can be flexibly and successfully applied to
different base models. Finally, the deviations of all the results are
small, which suggests that the performances of all the approaches
are stable and convincing.

5.4 Parameter Sensitivity Analysis
In this section, we investigate the sensitivity of the proposed frame-
work RDC w.r.t three key parameters, i.e, 𝜇, that is the weight of
the SSL loss in the overall loss function; 𝜏 , which is the tempera-
ture value in the distribution feature function; and 𝑘 , which is the
threshold for determining pivot users. Specifically, we evaluate how
RDC performs with changing the value of one parameter, while
keeping other parameters fixed.

In Figure 2, we report the performances of RDC in terms of MAR
on the Yahoo! dataset. The model achieves a high MAE when 𝜇 = 0,
that is, the SSL loss is not used. The MAE decreases with the weight
of SSL loss increases to 1, andwhen the weight continues to increase
to 2, the MAE maintains stable. The observation indicates that the
SSL loss plays an important role in improving the performance
of the model on MAR data. For 𝜏 , we find when it varies in the
interval [1.0, 2.0], the performance of the model is stable, which
demonstrates that when 𝜏 changes in a reasonable range, the model
is insensitive to this parameter. Finally, RDC achieves the best
performance when the threshold for determining pivot users 𝑡 = 0.3.
When 𝑡 → 0, the performance drops significantly. This is because
when 𝑡 gets smaller, we have a more stringent standard for selecting
pivot users, which leads to fewer pivot users but they cannot provide
sufficient calibration guidance.

6 CONCLUSION
Selection bias, which is introduced by the self-selection behavior
of the users in providing explicit feedback, has been shown to seri-
ously damaged the performance of recommendation models. In this
work, we investigate the mitigation of selection bias via a novel
self-supervised learning based framework Rating Distribution Cal-
ibration (RDC) to alleviate the negative impacts of selection bias
on training classical recommendation models. In addition to the
original training objective, we introduce a rating distribution cali-
bration loss which aims to correct the predicted rating distribution
of a biased user by forcing them to be close to that of similar unbi-
ased users. Extensive experiments are conducted on a real-world
recommendation dataset and the results show that our proposed
framework outperforms the original models as well as state-of-the-
art debiasing approaches by significant margins. We also conduct a
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Figure 2: Parameter sensitiveness. (a) 𝜇 for the SSL loss
weight; (b) 𝜏 for the temperature value; (c) 𝑡 for the pivot
user threshold.

parameter sensitivity analysis for our proposed framework. As fu-
ture work, we are going to investigate the possibility of leveraging
SSL to alleviate selection bias in other recommendation scenarios,
such as social recommendation.
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A PROOF ON THE UNBIASED ESTIMATION
OF E

We use an observation matrix𝑂𝑇 = (𝑂𝑢,𝑖 ) to denote the rating 𝑟𝑢,𝑖
is observed (𝑂𝑇

𝑢,𝑖
= 1) or not (𝑂𝑇

𝑢,𝑖
= 0) in the MAR test set Rtest.

Given Rtest is missing at random, we have 𝑃 (𝑂𝑇
𝑢,𝑖

= 1) =
|Rtest |
|R | .

Then

E𝑂𝑇
𝑢,𝑖
(Ete) = 1

|Rtest |
∑

(𝑢,𝑖,𝑟𝑢,𝑖 ) ∈R
E𝑂𝑇

𝑢,𝑖
[𝑂𝑇𝑢,𝑖 × (𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2]

=
1

|Rtest |
∑

(𝑢,𝑖,𝑟𝑢,𝑖 ) ∈R
𝑃 (𝑂𝑇𝑢,𝑖 = 1) × (𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2

=
1

|Rtest |
∑

(𝑢,𝑖,𝑟𝑢,𝑖 ) ∈R

|Rtest |
|R | × (𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2

=
1
|R |

∑
(𝑢,𝑖,𝑟𝑢,𝑖 ) ∈R

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2 = E

Hence, the error on the MAR test set Etest is an unbiased estimation
of the error on the full rating matrix E.

B BASELINES
In this section, we introduce the representative baseline approaches
that we compare our method with.

Vanilla: The base recommendation model that doesn’t explicitly
deal with the selection bias.

CPT-v [10]: A generative model that jointly models the gen-
erative process of rating values and the missing mechanism. The
missing mechanism is based on the assumption that the probability
that a rating is observed depends only on that underlying rating
value.

Heuristic error imputation (HEI) [17]: In HEI, a heuristic er-
ror imputationmodule is employed to estimate the prediction errors
of the rating model. Specifically, the prediction error is imputed as
a constant hyper-parameter. The rating model is trained by opti-
mizing the real errors on the observed data as well as the imputed
errors on the unobserved data.

Inverse Propensity Score (IPS) [16]: The IPSmethod estimates
the probability of observing a rating (i.e. propensity score) and uses
the inverse probability score to weight the objective function.

Doubly Robust (DR) [18]: A framework that combines the
techniques of error imputation and inverse propensity score. An
imputation model and a rating model are trained alternatively and
affect each other. Both two models are trained with IPS weighting.

Learning to Debias (LTD) [19]: Based on the above IPS and
DR methods, a propensity score estimation model is introduced to
adjust the propensity adaptively according to the performance of
the rating model on MAR data. Here we implement the LTD model

with DR as the basis, which achieves the best performance among
all the models using LTD.

C EXPERIMENTAL SETUP
In our experiments, we compare different debiasing tricks on two
classical base recommendation models: MF and NFM. For the MF
model, we set the size of latent factors for users and items as 40.
For the NFM model, the embedding size of users and items is set as
40. Following the bi-interaction layer, an one-layer feed-forward
neural network with a hidden size of 100 is adopted to compute
the rating prediction. We use Sigmoid1 as the nonlinear activation
function. For the approaches which need to use MAR data in the
training phase, i.e., IPS, DR, LTD, and our proposed method, we
randomly set aside 5% test data as the required MAR data. We also
include theseMAR data in the training set to train the rating models,
which empirically improves the model performance [19]. As for
other baselines, the 5% test data are also used for training to have
a fair comparison. For all approaches, we randomly set aside 10%
MNAR training data as the validation set and the hyper-parameters
are fine-tuned based on the rating model’s performance on such
validation set.

For baselines using IPS (IPS, DR, DR-LTD), we employ a Naive
Bayes estimator [16] to calculate the propensity scores, given there
are no available additional features of users and items in the Yahoo!
dataset. Our proposed model also uses IPS to weigh the ratings
during training.

1Sigmoid(𝑡 ) = 1/(1 + exp(𝑡 )) .
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