
Learnings from Building the User Intent Embedding Store
towards Job Personalization at LinkedIn
Nagaraj Kota, Venkatesh Duppada, Ashvini Jindal, Mohit Wadhwa

LinkedIn AI, India

{nkota,venkd,ajindal,mwadhwa}@linkedin.com

ABSTRACT
Search and Discovery process of a job-seeker towards realizing the

dream opportunity can be very complex. Given the dynamic nature

of job postings, churn-rate of skills, and gaps in intent matches,

professionals often find it hard to discover the right opportunity.

Most often, they need guidance on the right search queries to issue

or next-steps in the job-seeking funnel to reach a target job-apply.

In this work, we experiment with large-scale job-sessions dataset

from LinkedIn, to understand and represent user’s job-seeking be-

havior. In particular using action sequences unified from various

search and discovery channels, we pre-train language models, e.g.

BERT (Bidirectional Encoder Representations from Transformers)

to model user’s session activities. We further fine-tune the BERT

based contextual session embeddings towards predicting entities

from target sessions, in an eXtreme Multi-Label (XML) classifica-

tion setting. We hypothesize that XML fine-tuning task enables

dense-representation, and predicted entities to be used efficiently

in multiple downstream tasks of job-search query recommenda-

tion, job-search ranking, job-recommendation retrieval, and job-

notification expansion, as shown in experiments. We demonstrate

significant improvements in accuracy across tasks leading to re-

duced time to reach a given job-apply, as well as increase in total

job-applies in the system. To the best of our knowledge, this is

the first work to efficiently model cross-channel activities data at

scale using self-attention mechanisms, leading to statistically signif-

icant improvement in job-seeker experience. We also share metrics

impact and learning from deploying these models in production

towards job-seeker satisfaction.

KEYWORDS
Personalization, Query Recommendation, Extreme Classification,

Self-Attention, BERT, Transformer, Search and Recommendation

1 INTRODUCTION
Large-scale economic graph

1
of entities, where professionals, jobs,

skills, companies, etc. are interconnected, provide a rich represen-

tation of the global digital economy. Online professional social

networks such as LinkedIn, aims to create an economic opportunity

1
https://economicgraph.linkedin.com/

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD’21 IRS Workshop, August 14–18, 2021, Singapore
© 2021 Copyright held by the owner/author(s).

Member
Activity
Timestamp

Alert

Recommendation

Search

Browse

Apply

Interaction

Sample	Job
Session

CN:	company_1
JT:	Chief	marketing	&
digital	officer

CN:	company_2
JT:	Vice	president	of
marketing

Q:	Chief	marketing	officer

CN:	company_3
JT:	Vice	president	of
marketing

CN:	company_3
JT:	chief	marketing		&
digital	officer

CN:	company_3
JT:	chief	marketing		&
digital	officer

Figure 1: An illustration of a job-seeking funnel, where the user in-
teracts with multiple channels to finally apply for a job.

by making this economic graph universally explorable and action-

able. Jobs marketplace is one such key vertical in the graph, where

job-seekers connect to their dream opportunity through various

channels involving search, recommendation, alerts, and navigation.

We define job-seeking funnel of a user as collection of job sessions,
each consisting of search queries and actions such as view, save, dis-
miss, or apply on a job-posting, which could originate frommultiple

heterogeneous channels. We also note that a funnel is successful

when job-seeker hears back from the job-poster for the applies

(considered as partial success) that were done. Figure 1 illustrates a

sample job session, where the job-seeker following various search

& discovery channels applied for a job title(JT): Chief marketing &
digital officer at a company(CN): Company_3. Moreover, the activity

funnel was successful, since job-poster viewed the candidate profile

and interacted in a short window leading to an Interaction event.

We do not consider sparse delayed feedback on ’hired’ status in this

work, which are typically many months away.

Potential applications of using such a large collection of job-

seeking activity funnels are diverse, where one can personalize

the professional connection recommendation, feed of network up-

dates, and also recommend relevant courses for acquiring required

skills - all tailored towards realizing the dream job with entities of

interest. In this work we focus on personalizing search and discov-

ery channels within the jobs-marketplace. However, our method

is also applicable in domains such as e-commerce, news, and mu-

sic, where understanding diverse user actions, intents in activity

funnel (e.g. purchase) can lead to relevant contextual personalized

experiences. Traditional approaches to personalization include en-

gineering through a) learning user, item specific model parameters

ex. GLMix [34] b) aggregate statistics of interacted entities ex. user-

jobTitle clicks, c) representation learning to yield user, and items

in same semantic space, optimized for single, or multiple tasks [19].

We argue that these approaches either lack in 1) transferability

of semantics across tasks, 2) model-capacity to understand finer

intents in funnel. Also, these approaches are hard to extend and

scale, if we were to augment user’s activities from other verticals

(LinkedIn feed, learning) related to their job-seeking behavior. For

example, a user may be more interested in reading news about a

specific company or people that she is following, which can help

to realize her dream job. Also, user and item semantics can change

over time. Ex. during COVID, there was a shift towards remote,
work-from-home jobs, and many new job-postings with healthcare

related skills. Users too, upon acquiring new skills, want to shift

domain, or type/role of jobs.

In this work, we delve deeper into modeling user intent and inter-

ests by leveraging the actions in job-seeking funnel through semi-

supervised approaches at scale. Treating user’s job-seeking funnel

as a document, we explore the well-known strategy of unsupervised

pre-training and supervised fine-tuning for various downstream

search and discovery tasks. We argue that, text understanding of

activities can adapt to newer job postings (new item-ids), as the

text have similar content and semantics. It can also adapt to shift in

job-supply marketplace, since we model the job-seeking behavior

based on subwords of the actions. While we can deeply personal-

ize the experiences for warm-users using their rich content in the

job-seeking funnel, we can infer intent vector for cold users and

not signed-in users based on their initial set of interactions as well.

Specifically, our contributions are as follows:

• We summarize job-seeking funnel through a low dimen-

sional dense representation using BERT (Bidirectional En-

coder Representations from Transformers) [13] pre-training.

We highlight certain design choices and large-scale chal-

lenges in BERT pre-training unique to our application. We

further formulate an eXtreme Multi-Label (XML) classifi-

cation setting, where the contextual representations from

pre-trained model are fine-tuned to predict entities, that are

relevant to users’ trail of activities.

• We demonstrate transferability, and utility of such fine-tuned

user embeddings, and predicted entities in diverse down-

stream tasks: 1) guided query recommendation, 2) job-search

ranking, 3) candidate selection in job-recommendation, and

4) audience expansion in job-notifications.

• We A/B test the proposed self-attention models in produc-

tion through a unified architecture involving daily inference

flows.We demonstrate significant increase in job-applications

leading to confirmed hires (estimated at +5%), along with

job-seeker satisfaction through various quality metrics. All

these are enabled through personalization across diverse

tasks, leveraging the core job-seeking funnel representation.

The remainder of the paper is organized as follows. Next section

discusses related work. Overall framework with job-session dataset,

and modeling strategies are discussed in Section 3. Search and

discovery downstream tasks, and serving architecture are discussed

in Section 4. Model-fitting configurations, and experiments are

presented in Section 5, with insights from production deployment

in Section 6. Finally, we conclude the work with future directions.

2 RELATEDWORK
There have been several studies on the impact of short/long-term

user’s action history on Search, Query Auto-Complete (QAC) per-

sonalization. Long history, modelled as a bag of n-grams from past

query sequences in a LambdaMART framework, shown to be a

better predictor of intent in QAC [26], where as short history is

more useful as the session evolves in personalizing the SERP [5, 30].

We differentiate the work from generic web-search query recom-

mendation task in that we may not have historical query sequences,

but have additional context available from non-search channels. Re-

cent work [2, 3, 11] models cross-task data to exploit the sequential

dependency among the individual actions to rank both documents

and queries. But these works leverage only the search task sessions

for downstream tasks. However, in a practical setting, both search &

recommender systems co-exist, and our work exploits on sequence

of actions from various channels. Our work is also related to query

inference from web documents [16], where a Transformer decoder

is used to generate queries using a graph-augmented sequence to

attention architecture. In our work, we focus on predicting queries

that would likely to lead to success in a job-seeking funnel. Hence

training data characteristics and end optimization differ from the

above work.

Global and local attention mechanisms proposed in [21], are

also adopted in query recommendation and forms a strong base-

line as noted in [3]. Hierarchical RNN architectures [10, 12, 27] are

also well studied incorporating session and user level behaviors

to model the short/long-term search history. [35] explores self-

attention for modeling behavior interactions in multiple semantic

spaces for recommendation tasks. Compared to these works, we

explore architectures based-off self-attention for personalization of

diverse search and discovery tasks. We focus on user intent model-

ing through language models that scales to hundreds of millions of

users, and are engineered as context vector for diverse job-seeking

tasks. We also provide details on business impact, and learning

from multiple deployments in production.

In the context of online advertising, Hidden Markov models

(HMMs) are explored to model purchase funnel to assign users

to stages [1]. Our work is also closely related to activity funnel

modeling in look-alike campaigns, where Bi-directional GRUs with

local, and global attention mechanisms are explored to predict

user’s conversion and automatic tagging of activity funnel into

different stages [36]. Sequential recommender systems literature

is also related to our work, where the methods predict the next

item that the user likely to take an action, exploiting relevant in-
formation from user’s action history. Self attention mechanisms

[18][20] are used effectively to predict the next best action, based on

the homogeneous item sequences. Additional metadata, leveraging

user micro-behavior are shown to further improve the precision

of recommenders [15, 23, 28] as well. We differ from the next item

prediction literature in that, our focus is to get an efficient user

activity representation that can be transferred to various down-

stream tasks. We also work with heterogeneous action sequences

2

Figure 2: An example activity document with two job-sessions con-
sisting of queries, action_types, and job-postings (company, and job
title). *indicates an applied job-posting

involving queries, items, item annotations, and micro-behaviors,

and show the novelty of textual understanding of activities at scale.

3 ACTIVITY UNDERSTANDING
FRAMEWORK

In this section, we emphasize on job-seeking funnel characteristics

and how self-attention architectures are adapted to exploit the

sequence contexts towards intent understanding.

3.1 Overview
We denote a user 𝑖’s job-seeking funnel or activity document 𝐴𝑖 ,

as a collection of multiple job-sessions, 𝐴𝑖 =
⋃

𝑗 𝑆𝑖, 𝑗 , where each

session 𝑆𝑖, 𝑗 (𝑗th session of user 𝑖), consists of arbitrarily ordered

1) job posting that was acted upon (with types: viewed, applied,

or saved), and 2) search queries made as users engage in search &

discovery experience. We treat 30-mins of idle time as a criterion

for session boundary. We represent the space of user’s explicit

queries as 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝐿}, and the interacted documents as

𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑀 }. Each job document 𝑑𝑘 is represented as a

set of action_type, company name, and job title, denoted as 𝑑𝑘 =

(𝑎𝑡𝑘 , 𝑐𝑛𝑘 , 𝑡𝑡𝑙𝑘). Hence, we represent a user 𝑖’s job-session 𝑆𝑖, 𝑗 as

𝑆𝑖, 𝑗 =
⋃
𝑘

{
𝑞𝑖, 𝑗,𝑘 , if 𝑡𝑦𝑝𝑒 (𝑖, 𝑗, 𝑘) = 𝑞𝑢𝑒𝑟𝑦

𝑑𝑖, 𝑗,𝑘 , otherwise

(1)

Note that, one can further extend the granularity of action_types

𝑎𝑡𝑘 to {short_view, long_view, interaction, etc.}. Such finer micro

behaviors [15] have been shown to improve performance in various

other recommendation settings as well. Below we define the two

sequence context variants that we study in this work.

Query sequences per user 𝑖 are constructed using in-session

or across-sessions query histories, from the activity document 𝐴𝑖 .

This subset of the data is similar to many of the web search query

recommendation tasks.

Action sequence is same as𝐴𝑖 and captures the intent through

queries, action_types, company, and job titles as shown in Figure 2.

To the best of our knowledge, we have not seen such cross-channel

user trails being leveraged for diverse search and discovery tasks.

3.2 Data Characteristics
A job-seeking funnel similar to that of an e-commerce purchase

funnel, is a sequence of job-related activities that are triggered

from various search & discovery channels. We construct a 1.4B

job-sessions dataset, from these trail of activities over 13-months.

Figure 3 provides a distribution of sessions in number (left) and

share of action_types (right) at various session lengths. In order

to capture the impact of search on job-applies within session, we

slice the metrics by srch_apply_srchApply to denote if a session

5 10 15 20Session Length
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f S
es

sio
ns

1e8
0_0_0
0_1_0
1_0_0
1_1_0
1_1_1

5 10 15 20Session Length
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f S
es

sio
ns

1_1_1
1_1_0
1_0_0
0_1_0
0_0_0

Figure 3: Distribution of job-sessions against session length, sliced
by if a session has 1) any search event, 2) any job-apply, 3) job-apply
post a search event. e.g. 0_1_0 indicate sessions with a job-apply ac-
tion, but no search queries.

1) has any search event 2) has any job-apply 3) has a job-apply

post a search event. We observe a significant share of short sessions

with length<=2 and no search queries (0_*_*), that are mainly driven

by the transactional push job-notifications, and job-recommender

systems. However, job-applies from the segment (0_1_0) indicates

satisfied seeker intent, which otherwise are missed out, if had mod-

elled user intent using only the search-engagement channel. From

the right subplot in Figure 3, one can observe that at higher session

lengths (>10), >50% of sessions have at least one search action (1_*_*)

in them. Also, job-apply post search activities (1_1_1), among the

search sessions are between 40-50%, much higher (+2x) compared

to the lower session-length (passive) region. Another observation

is that of increase in share of search and job-applies post search

activities, as the session length increases. This is mainly driven by

the active job-seekers who use search channel often and contribute

to significant number of job applications in the system. This is also

observed in online advertising [36], where unaware users transition

to high intent / purchase through various intermediate stages of

aware -> interest -> consideration. Above observations show that

there is a huge value in exploiting the context across channels.

3.3 Unsupervised Pre-training
Treating job-seeking funnel as a document of variable length

text, with each job-session analogous to a sentence, we employ

Bidirectional Encoder Representations from Transformers (BERT) [13]
pre-training to learn the contexual representations. We experiment

with a corpus of 1.4B job-sessions that consists of 70B word to-

kens, which is significantly higher than BookCorpus(800M), and

Wikipedia(2.5B). Following the original BERT work, we use Byte

Pair Encoding (BPE) [25] encoding mechanism and build a subword

vocabulary of size 100K.We note that certain action types like VIEW

are very common in the session, and there are many repetitive user

actions across sessions, ex. company entities. Hence, along with

full word masking, we do selective masking to not mask frequent

action-types. We keep the same masking (random 15%) strategy

as BERT with a dupe factor of 3 and optimize Masked Language

Model (MLM) objective only, as we observed that Next Sentence

Prediction (NSP) task is relatively simpler in our case. Note that

MLM objective aims to predict entities at random in a session, en-

forcing BERT to accurately predict user trajectories. Further design

3

choices w.r.t training, architecture, masking mechanisms, and pool-

ing are discussed in Section 5.1, as the job activity semantics are

very different when compared to natural language sentences from

BookCorpus/Wikipedia.

3.4 Supervised Fine-tuning to Predict User
Intents at Scale

We consider a variety of downstream search and discovery tasks

as described in Section 4, which requires an aggregated representa-

tion of user’s job-sessions. From an engineering design perspective,

it is desired to incorporate the aggregated representation without

further fine-tuning. Also, we do not want to maintain channel spe-

cific, or task-specific versions of user embedding in production. We

also note that the usual supervised ranking task’s data that maxi-

mizes P(action | user, jobPosting, context) are not adequate here. It

breaks the sequence, and are also not aligned to predict the various

intents in the job-seeking funnel. Hence we predict entities of inter-
est from the held-out 20% job-sessions, in an eXtreme Multi-Label

(XML) setting[17]. Predicted entities or labels are explicit actions

from users, for e.g. search queries, or applied (company, job-titles).

For fine-tuning, we consider recent 1-chunk (512 sub-words) from

user’s job-session activities as input to the BERT pre-trained model

to yield [CLS] token (and other pooling variations’) embedding,

which we treat as user representation or user-activity vector. We

add a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 classification layer on top of the derived embedding

to rank the entities of interest per user activity document. This

enables BERT model parameters to be updated end-to-end dur-

ing backpropagation. Above fine-tuning strategy enables multiple

usecases at scale and leads to significant improvement over the

pre-trained model, as shown in experiments.

4 SEARCH AND DISCOVERY
PERSONALIZATION USECASES

In this section, we provide details on diverse downstream tasks,

and how activity representations are leveraged in personalizing

user experiences.

4.1 Guided Query Recommendation
We consider personalizing job query suggestions in cards that

are shown on LinkedIn jobs home page
2
as ‘suggested job searches’,

or as soon as the user clicks the search box ‘try searching for’. ‘Sug-
gested job searches’ card is targeted towards users to drive more

searches, converting passive intent to active interests. These sug-

gestions are also aimed at bridging the gap in discovery process,

that many job-seekers did not know how to issue the relevant

queries to reach the right job-postings. ‘Try searching for’ card

serves dual purposes, where we personalize the suggestions based

on past search queries issued and/or using much richer activity

funnel beyond search.

Task definition: Given a user activity document 𝐴𝑖 , predict a
subset 𝜏 of queries in 𝑄 that relevant to the sequence of activities.

Note that, we extend the task definition in [3] to include cases,

where query history may not be present, and the trail can be arbi-

trarily long with interactions from multiple channels. In fact, ∼ 16%

of the job-seekers never issued a search query, but instead engaged

in other recommendation channels.

2
https://www.linkedin.com/jobs/

eXtreme Multi-Label Classification, Slice: Given a user ac-

tivity document representation, we want to predict the queries that

happened in the past or in a held-out sessions data, or both. In a typ-

ical job-seeking system, potential number of queries to be predicted

can easily run over > 10𝑀 . Hence we formulate the query rec-
ommendation task as an eXtreme Multi-Label (XML) classification

problem. There exists a rich body of literature on extreme classifi-

cation
3
, and we leverage state-of-the-art linear classifier, Slice [17],

that can scale to ≈ 100 million labels with inference time under

logarithmic in number of labels. We denote 𝐿, 𝑁 , 𝐷 as number of

labels, training samples, and feature dimension respectively. Slice

uses Hierarchical Navigable Small World Graph (HNSW) [22] for

sampling 𝑂 (𝑁
𝐿
𝑙𝑜𝑔𝐿) hard negatives per label. Along with the ex-

plicit positives, we train 𝐿 1-vs-all classifiers using the user-activity

vectors obtained through representation learning, in parallel. We

note that overall complexity for training 𝐿 classifiers is𝑂 (𝑁𝐷𝑙𝑜𝑔𝐿).
Prediction time is 𝑂 (𝐷𝑙𝑜𝑔𝐿) due to an efficient label candidate se-

lection using Approximate Nearest Neighbor Search (ANNS) over

HNSW index[22].

We also study BERT fine-tuning in an XML setting that are

trained end to end. Compared to the Slice training, where feature

extraction and learning linear classifiers are de-coupled, fine-tuning

enables BERT model parameters to be updated end-to-end during

backpropagation as described in Section 3.4.

4.2 Learning to Rank in Job Search
Search channel contributes to majority of the job applications

in the system, primarily driven by the active job-seekers. They

issue queries related to entities of interest (title, skill, company

etc.), and engage with job postings towards their dream job. Passive

job-seekers also engage with search through their broader intent

queries. It is critical to personalize the Search Engine Results Page

(SERP) that are relevant, not just to the issued queries, but also to

user’s profile, onsite behavior, and context information ex. location,

recency. Learning to rank approaches are widely used in the indus-

try for SERP re-ranking, in that items with higher relevance are

ranked higher, maximizing certain utilities. We leverage TF-ranking

library [24] based out of Tensorflow for solving this large-scale per-

sonalized ranking problem. Production baseline is a deep and wide

neural architecture with query, jobPostings represented through

Transformer layers [29] in the deep part, and many {query, user,

document, context} features along with its sparse interactions are
incorporated in the wide part. We extend the deep part of the archi-

tecture with fine-tuned user-activity vector in a separate column

(frozen), followed by fully-connected layers for late interaction with

other features. We note that only the fully-connected layer weights

are learnt during the back-propogation and activity-vector remains

the same across usecases. While fine-tuned activity vector captures

semantics across channels, they are further adapted to optimize

Search objectives.

4.3 Audience Expansion in Job Notifications
Push notifications through various channels e.g. App, E-mail

are critical in retaining users, who care for freshness of the items

recommended. Job notifications system, where users are notified as

soon a relevant job is posted, enables immediate reach of relevant

3
http://manikvarma.org/downloads/XC/XMLRepository.html

4

Member1
Search activity

trail

Member1
Notification
activity trail

Member1
Recommendation

activity trail

Job Seeking Funnel
Generation
* sessionize
* actionTypeAnnotation

Member raw
session data

Pre-training for
session embedding

Inference for
session embedding

Fine-tuning (XML)
* eXtreme MultiLabel
Classification

Pooling
* short, long-term

Intent
models

task specific
models

nearline

offline - daily

Member
Entities

Member State
Vector

Personalization
usecases:
* query-recs
* query-rewriting
* search ranking
* document retreival
* recs ranking

Search &
Discovery

daily

Figure 4: High-level unified architecture for Search and Discovery Personalization

candidates (users) for job-posters. Similar to many recommenders,

this system recommends suitable candidate(s) for a posted job in a

two-step process. First the relevant job-seekers are retrieved based

on job-postings’ (query-side) metadata, entities ex. skills, title, loca-

tion. Matched candidates are then re-ranked by learning to rank

methods optimizing for certain utilities. We note that, entity-based

exact matches are precise, but are limited in recall, leading to low

liquidity in certain segment of jobPostings. We visualized a random

sample of user’s activity vector from BERT fine-tuned model. For

a given user with title:’Senior Counsel IP & Licensing’, top-ranked
neighboring user’s title were {(principal partner), (partner, patent
lawyer), (deputy general counsel - business, finance), (senior corpo-
rate counsel)}. This shows an evidence of many of the contexts

including job-seniority, job-function are implicitly captured in a

low-dim representation of a job-activity funnel and we were able to

accurately capture similar users in the job-seeking funnel. Hence,

we expand the top-K exact matches (anchor-set) from the entity

based retrieval to include candidates that are similar in their job-

seeking journey. To that end, we index the user-activity vectors

using HNSW [22] method for efficient search of nearest neighbors.

We denote this system as Scalable Approximate Nearest Neighbor

Search (SANNS). HNSW index is built offline and served/queried

online with REST APIs. Specific choices in indexing the vectors,

and querying mechanisms are described in the experiments.

4.4 Candidate Selection in Job Recommenders
Traditional candidate selection models leverage top-K user at-

tributes, or entities to form boolean clauses to retrieve relevant job

documents. These entities mainly come from user’s profile text, and

onsite behavior. Compared to the embedding based retrieval, this

strategy is explainable, and one can tweak the clauses for desired

precision, and recall. We extend the retrieval boolean clauses with

predicted entities from the guided query recommendation task, as

these are personalized based on user’s action sequences as described

in Section 4.1. We also leverage SANNS method in an offline setup,

based on applied sequences observed per job posting. Using the

initial-K applied members for a given job, we leverage HNSW index

and offline query mechanism to find similar job-seekers. These ex-

panded members per job are further re-ranked based on similarity

scores and are attributed to the job that was considered in context.

We then aggregate job attributes (like titles, skills) for a given mem-

ber across all the expanded jobs, and extend/re-rank the retrieval

boolean clauses. Both these schemes introduce personalized clauses

in candidate selection, derived from user-activity vectors.

4.5 Unified Serving Architecture
Figure 4 provides a high level architecture for personalizing

Search and Discovery tasks using the activity understanding frame-

work. First, we merge user actions from different channels {search,

alerts, recommenders } and create sessions with boundary idle time-

out of 30mins between any two actions. We annotate actions with

their types e.g. VIEW, APPLY, JOB_SEARCH as shown in Figure 2.

Though these actions are near real-time streamed through Kafka
4

events, we ETL with hourly cadence for all the actions to unify. Job-

sessions per user are persisted on HDFS, with BERT pre-training,

and fine-tuning under XML setting, were done using Tensorflow on

LinkedIn’s GPU cluster. Fine-tuned intent models are then used dur-

ing the daily inference for activity vector extraction. Task-specific

models (such as Slice) are leveraged to predict entities of interest

using user-activity vectors. We persist user-activity vector and en-

tities in Venice
5
key-value store. We observe that discriminative

models capture long-term intent across sessions and an addition of

query or an action does not impact the suggestions much. Hence,

currently we deployed it in a daily cadence, although we are look-

ing to update the dataflows/inference to Samza for near realtime

capability. Except for the usecase in Section 4.3, all others fetch

the required artifacts: activity vector, or bag of entities for a given

user, through point lookup off Venice store. Also, online search &

discovery usecases are abstracted from mode of update in the user

store, which could be nearline, or hourly, or daily.

5 EXPERIMENTS
In this section, we evaluate activity document representation mod-

els with its pre-training, and fine-tuning objectives. We also share

the insights from incorporating the user-activity vectors in various

personalization usecases. Keymetrics that we report from the online

user A/B tests include first-order click through rates (CTR), second-
order job-applications, and the end goal of increased confirmed-
hires. Note that, measurement of actual confirmed-hires would

require running A/B tests with much larger lookback window due

to delayed feedbacks. Also, the ground-truth data about job-poster

reaching out to job-seeker, interviewing, and getting-hired are

sparsely available through various applicant tracking systems (ATS).

4
https://kafka.apache.org/

5
https://engineering.linkedin.com/blog/2017/02/building-venice-with-apache-helix

5

Table 1: LinkedIn job-sessions dataset statistics

#docs

avg. sessions

per doc
total #tokens

unique

#tokens

Pre-training 85M 16.47 70B 4M

#examples #labels

avg. labels

per point

avg. points

per label

Fine-tuning

train:16M,

test:2M

500K 16.16 790.0

Hence, we model confirmed-hires using a predictive model that

accurately estimates the probability of a job-application resulting in

confirmed hire. We denote this metric as predicted confirmed-hires

(PCH). Due to sensitivity and business reasons, we will not be able

to provide further details on the features, and algorithmic details

of the PCH models.

Towards reproducibility of the main findings in this work, and

its relevance to broader recommendation challenges with new-

items, we also conduct experiments on publicly available Microsoft

News Recommendation dataset,MIND[32]. This challenge involves
textual understanding of user activities at scale, in-order to rank

documents that rarely occurs in the training data (12.5%). We detail

pre-training, supervised fine-tuning task, learning to rank setting,

and offline experiment results in Appendix A. Due to privacy, legal,

and business restrictions, we will not be able to release the LinkedIn

job-sessions dataset or the code.

5.1 Job-seeking Funnel Representation
Learning

For pre-training the BERT language models from scratch, we

collect a sample of job-seeking activities on LinkedIn from Jan-2019

to Jan-2020. Table 1 provides statistics of this large-scale dataset,

that consists of 1.4B job-sessions from ∼85𝑀 users.

Unsupervised Pre-training: As noted in Section 3.3, masked

job-sessions are given as input to BERT pre-training to optimize

Masked LanguageModel (MLM) loss. We input sessions in sequence

similar to that of original BERT work, in that they are seperated by

[SEP], andmaximum sequence length (ormax_positional_embedding)

across two-segments (i.e. two-sessions) are 512 subword tokens.

We experiment with various BERT configurations as noted in Table

2. With asynchronous parameter server distribution-strategy, we

optimize the model weights using TensorFlow on in-house TonY
6

cluster using 30 V100 GPU workers. We set #parameter-servers:4,

batch_size:32, and optimize using AdamWeightDecayOptimizer[13]

with learning_rate:5e-4. With total_training_steps:50M, which is 2

epochs of the duped (3-factor) masked job-sessions corpus, we set

warmup_steps to 20% of the train_steps per worker. Based on the

trade-off in validation loss, training time, and serving latency, we

chose 12-layer with 128 hidden-units and 2 attention-heads as the

final BERT configuration as marked in bold in Table 2.

For aggregated representation of job-sessions per user (i.e. user-

activity vector), we consider recent 5-chunks (i.e. 5*512 subword

tokens) from the activity document. Each chunk is given as input to

extract various contextual representations. We experimented with

1) [CLS], and 2) mean-token (REDUCE_MEAN) embeddings from

a) last layer, b) concatenation of last-4 layers. We found that mean-

token embeddings from last-4 layers outperform all the variants

in finetuning task (described below) with precision@k +2𝑥 , over

6
https://github.com/linkedin/TonY

Table 2: BERT pre-training configs. Highlighted row was optimal
w.r.t. training time, serving latency, and validation loss.

#Layers Hidden Size

#Attention

Heads

#Training

Params

Training

Time (days)

4 256 4 30M 5

6 512 8 70M 12

8 128 2 14.5M 2

12 128 2 15.4M 2.5

12 256 4 35M 5.5

the commonly used last layer’s [CLS] variant. We then mean-pool

the recent-5 chunks’ embedding to get user-activity vector. This

simple, yet practical scheme enables us to summarize very long-

range contexts when using BERT models. We are also exploring

Longformer[4] to directly model the long-range context as well.

To quantify the gains from BERT based contextual embeddings,

we also train global word vectors using fastText[6] to obtain ses-

sion (sentence) embeddings that serves as another feature extrac-

tion baseline. We use the same BERT pre-training corpus with a

vocab of 1.3M size consisting of top company phrases, and other un-

igrams. We learn the word representations using a 𝑠𝑘𝑖𝑝𝑔𝑟𝑎𝑚 model

with 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 loss, predicting the target word using a context win-

dow of 5. Various configurations with word vector dimensions

(100, 300, 512) and learning rate (0.05, 0.08, 0.1) are tried with 5

epochs. Of these, best performing variation with lowest test-loss

was (𝑑𝑖𝑚 = 300, 𝑙𝑟 = 0.08). We derive session (sentence) embedding

and mean-pool over all sessions to yield a 300d user activity vector.

Supervised fine-tuning, datasets/evaluation: We evaluate

user-activity vectors in predicting entities of interests under XML

framework, as mentioned in Section 3.4. We split the sequence

of sessions from a user activity document into 80% context, and

20% target. We construct two datasets: D1, where entities (search
queries, and applied job-titles, if any) from the 20% target are made

to predict. D2: where entities from 100% of sessions are made to

predict. D2 statistics are provided in Table 1. Note that we use

the term label, entity, query interchangingly. Also across the two

datasets, user-activity vector as context, is derived from 80% of the

sessions only. D2 has other practical benefits with prediction of

top-K ranked explicit entities that one can set an alert on or for

targeting of sponsored campaigns. In our offline experiments, best

method among D1 and D2 remains the same, although precision@k

are worser by ≈ 40% in D1, which is relatively a difficult task.

We report Precision@k by ranking the predicted entities that

follows the actual action sequences. However, in many cases, pre-

dicted entity (e.g. solutions architect) and actual ground-truth (e.g.

technical consultant) are related, which leads to no-match in preci-

sion@k definition. Hence we also define a new metric, Semantic-

Similarity@k to capture relatedness, as

1

𝑁

∑
𝑖

1

𝑘

𝑘∑
𝑗=1

max

𝑒𝑖
(𝑐𝑜𝑠𝑖𝑛𝑒 (𝑒𝑖 𝑗 , 𝑒𝑖)) (2)

where for user 𝑖 , 𝑒𝑖 𝑗 denotes entity embedding of 𝑗 ’th predicted en-

tity by model and 𝑒𝑖 are set of all ground truth entity embeddings of

user 𝑖 . 𝑁 is the total users in the evaluation set. We note that the en-

tity embeddings are obtained as phrase-vectors through fastText[6],

trained on a query sequences dataset. We do not impose ordering

constraints among the target entities, as they are heterogeneous

in its downstream utility. E.g. query that lead to many discovery

6

Table 3: Comparison of discriminative query suggestion models
Variant Precision Semantic Similarity SC

@1 @3 @5 @1 @3 @5

CNN+e2e 0.525 0.411 0.348 0.73 0.68 0.65 0.097

fastText+e2e 0.575 0.442 0.368 0.76 0.70 0.67 0.158

BERT+e2e 0.80 0.655 0.546 0.86 0.81 0.77 0.122

fastText+Slice 0.418 0.27 0.21 0.73 0.69 0.67 0.699

BERT_PT+Slice 0.403 0.27 0.207 0.73 0.68 0.66 0.760

BERT_FT+Slice 0.696 0.50 0.384 0.84 0.78 0.75 0.766

sessions, vs job apply vs abandonment. Business may care for one

or multiple of these goals requiring multi-objective optimization[9]

formulations, which is beyond the scope of this work. Hence we

do not report the usual ranking metrics such as Normalized Dis-

counted Cumulative Gain (NDCG), Mean Reciprocal Rank (MRR)

for query recommendation task.

Baseline models, trained end to end:We further experiment

with models that are optimized end to end to predict relevant enti-

ties, using the global word vectors (fastText) as input representation.

We consider 1) a neural network with 2-layers of fully-connected

layers of 64-hidden units each with batch normalization, and relu

activation, 2) CNN model with recent 2048 word tokens of the ac-

tivity document as input. Word tokens are initialized with 300d

fastText vectors learnt from the job-sessions corpus. We use 128

filters, each with [2,3,4,5] word n-grams followed by max-pooling

and a fully connected layer with 512-hidden units. We denote these

baselines as fastText+e2e, and CNN+e2e respectively. CARS[3],
LostNet[11] as a baseline did not scale to our dataset D2, but we

provide a note on results from ACG [12], and MNSRF[2]. Since
the supervised fine-tuning task on dataset D2, is similar to guided
query recommendation, we report the overall results in Section 5.2

5.2 Personalized Query Recommendation
User-activity vector from BERT pre-trained model, denoted as

BERT_PT, is obtained by the concatenation of 128d vectors (mean

token-embeddings) from last-4 layers to yield a 512-dimensional

vector. A Slice model is trained using 16-million 512d BERT_PT

activity vectors to predict relevant labels from 500K set that were

derived from top occurring entities in job-search logs. We denote

this modeling strategy as Bert_PT+Slice. The parameters used to

train the slice model are M:100, efC:300, efS:300, num_nbrs:300,

classifier_threshold:1e-6. For more details on these parameters, we

refer the reader to [17]. Similarly, we train another Slice model on

300d fastText activity vector to yield fastText+Slice. We also study

fine-tuning BERT_PT in an eXtreme Multi-Label (XML) classifi-

cation setting. We add a classification layer on top of the derived

user-activity vector from BERT_PT and fine-tune the network in

end-to-end manner along with BERT parameters. We denote this

method as BERT+e2e (refers to BERT fine-tuning end to end). To

measure the standalone impact of Slice, we also trained another

Slice model using the 512d user-activity vector with concatenation

of mean embedding of last-4 layers extracted from fine-tuned BERT

(BERT_FT). We denote this method as BERT_FT+Slice.
Offline evaluation results on dataset D2 are reported in Table

3. Suggestion Coverage (SC) denotes the number of unique pre-

dicted labels (among the top-100 predictions), across entire user

base normalized by label space of 500K queries. This metric captures

the diversity among the predicted entities for exploration. Low SC

Table 4: Suggestions for the activity document in Figure 2
Model Top-5 query suggestions

BERT_FT + Slice equity portfolio manager, quantamental, equity re-

search associate, long/short equity, tmt analyst

Table 5: Editorial evaluation of top-5 query suggestions, with empty
search query history

Perfect Good Fair Bad

fastText+Slice 0.375 0.191 0.23 0.21

BERT_FT+Slice 0.64 0.16 0.11 0.09

indicates that the model is biased towards predicting certain labels,

which are highly-frequent (head) in the logs. We make several ob-

servations: 1) Among various feature extractors for user activity

vector, BERT_FT performs the best compared to global fastText,

CNN and BERT_PT, showing the utility of fine-tuning. 2) Among

SC, Slice outperforms end-to-end training due to its candidate label-

lists, that are generated by the nearest neighbors search on HNSW

index of label embeddings. End to end training, including BERT+e2e

are biased towards predicting head labels. One reason could be that

the logits in the output layer are not well caliberated, which is a

hard problem in XML setting. 3) Although precision@K seem lower

due to its binary/indicator relevance, semantic similarity@k reveals

that many of the predicted labels are very relevant and semantically

related to the ground truth. This gap is wider in Slice variants. 4)

Considering SC and semantic-similarity (which has a direct impact

on ratio of exploratory suggestions vs repeating past queries on

the UI), we chose BERT_FT+Slice as the overall winner.

With no search history:We also construct another datasetD3
of users, who did not issue any search query, but interacted through

other channels. Since there isn’t any ground-truth data, we evaluate

query recommendation quality through editorial guidelines. Table 5

reports the evaluation results on dataset D3. In this study, editors are

asked to grade if a query suggestion is semantically relevant to the

user-trail of activities. With no calibration, or thresholding of Slice’s

one vs all classifier scores, we were able to achieve lowest fraction

of bad-suggestions with Bert_FT+Slice (resulting in a deployable

candidate).

Semantic Query Recommendation: For the activity docu-

ment in Figure 2, top-5 suggested queries from BERT_FT+Slice

are presented in Table 4. We highlight the semantic relevance of

recommendations with certain query words being not present in

either of query or action sequences. For ex. quantamental, long/short
equity, tmt analyst from BERT_FT+Slice were not present in activity

document, but are inferred based on pooled activity vector. Multi-

task modelMNSRF[2] had P@1=0.31, and higher ’unk’ predictions.

We attribute this to its neural architecture, which was designed to

model homogeneous search action-sequences only. Upon inspec-

tion of few examples, we found that non-search activities were

equally discriminative in predicting the target queries, hence low-

ering MNSRF’s precision. We also experimented with generative

models ACG[12] which had P@1=0.567 on dataset D2. These were

trained using the repo from [3] with word vectors initialized from

job-session pre-trained fastText embeddings. However, in 99.3% of

the cases, the generated query was a past searched one, lowering

its utility since there exists another card on ’Recent Searches’. This

repeat querying behavior over a long horizon of job-sessions are

possibly due to users clicking on past searches (available in search

box) or through alerts, which the generative models cannot robustly

7

model. However, BERT_FT+Slice efficiently extracts the long term

interests through much richer action sequence representation and

scalable linear classifiers for precise exploration.

Online A/B test:We employ daily batch inference flows to com-

pute personalized suggestions from BERT_FT+Slice, served through

Venice as described in Section 4.5. We deployed BERT_FT+Slice

discriminative model in both ’Suggested job searches’, and ’Try

searching for’ cards to majority traffic as of May 14 2020. From

the two weeks of A/B tests before the full-ramp, over a sequential

phrase-vector (trained on member’s job-title transition) baseline,

we observed significant first-order impact with total clicks on these

cards up by +5.7%, with CTR: +8.56% leading to +1.35% job-applies,

and +0.82% predicted confirmed hires.

5.3 Learning to Rank in Job Search
Experiment configuration: As described in Section 4.2, pro-

duction baseline is a deep and wide architecture, where the deep

part is a Transformer [29] (1-layer, 100-hidden, 10 attention-heads)

encoder, which embeds search query, job title, and job company

separately, followed by 4 fully-connected (fc) layers. We initialize

with 100d glove word-embeddings (in-house), and apply batch nor-

malization in all fc layers Wide part consists of multiple categorical

(ex. job industry, geo-location), and continuous features (ex. overlap

of query and job title) and contribute to 100+ diverse features repre-

senting sparse interactions of {query, user, job-document, context}.

For nonlinearity, we use ReLU and tanh activation in deep and wide

part respectively. At the end, features from wide and deep part are

concatenated to optimize for job-engagement.

We extend existing deep and wide architecture, where we ap-

pend user vector derived from BERT_FT in it’s own tower in deep

part of the architecture followed by 5-fc layers with hidden units

of 512, 256, 256, 128, 128. Following other components in deep part,

we also apply batch normalization and ReLU activation. Our aim is

to show the utility of user activity vector (frozen), and task specific

adaption without having to further fine-tune them. However, one

can directly fine-tune the BERT_PT model within this architec-

ture to learn task specific semantics leading to improved perfor-

mance at the cost of increased training time and higher serving

latency. We train the network with batch_size:64, train_steps: 360k,

learning_rate:1e-1 using Adagrad optimizer with cross entropy loss

[8]. During training, we primarily track NDCG@25 metric and

save the model checkpoint based on validation set performance.

The model is trained using TF-Ranking framework with 20 CPU

workers and takes ∼ 4 hours for training.

Results: In offline evaluation, with BERT_FT,we observed+1.21%,
and +2.5% improvement in NDCG@25, and AUC-ROC over the

production baseline model. These were significant given that there

exists multiple activity related features, embeddings in the produc-

tion model with years of feature engineering. We did not observe

significant changes in metrics with number of fc-layers, and hidden-

units variations in the activity vector tower. In online A/B tests,

at 20% ramp over 4-weeks, we observed +1.95% CTR@K (organic

job-postings), +1.46% job-applications, and +1.5% PCH lifts.

5.4 Audience Expansion in Job Notifications
Experiment configuration: To scale to hundreds of million

users, we randomly partitioned the user activity vector corpus into

Table 6: Retrieval evaluation with predictive entities, over the pro-
duction baseline

Candidate selection models Offline Metrics

AUC F1

(fasttext+Slice) + SANNS −1.59% −1.70%
Baseline + (fasttext+Slice) + SANNS +4.01% +3.88%
Baseline + (BERT_FT+Slice) + SANNS +3.85% +3.41%

16 shards, and built HNSW indexes for parallel querying for nearest

neighbors. HNSW parameters are set to M:48, efC:32, efS:1000. We

used 300d fasttext based user activity vector, in order to tradeoff

memory, and online latency over the BERT_FT vectors. Offline

index takes around 6hrs to build and are refreshed every three

days. During the online querying phase, we considered following

query-vector construction mechanisms. 1) mean representation of

the seed-set activity vectors, 2) pseudo-relevance feedback, where

we independently retrieve top-K nearest neighbors for each of the

seed-set users. We then use the mean-representation of the seed-set

+ expanded users. This is done to reduce the noise among the initial

seed-set. The query-vector is then used to retrieve 500 nearest

neighbors with 0.80 similarity score threshold, which are merged

with the exact-match candidates, and are re-ranked using learning

to rank models. Users satisfying certain relevance threshold for the

jobPosting, are further considered for the push notification.

Results: We evaluated offline recall of SANNS system, based on

the applied job titles overlap between query member and retrieved

similar members over the past 2 months data. Among the query-

vector mechanisms, we found that mean-representation worked

better with top-5 relevant members from the anchor set. This was

measured using an internal ML model that is optimized for quality

of matches between user, and jobs. We also found cosine-distance

as a winning variant among similarity measures. In online A/B test,
from the 50% ramp of mean-representation variant over 4-weeks,

we observed increased notifications liquidity with relevant (unique)

recommendations. Over the entity-based exact matches, we ob-

served +79% unique recommended candidates, +127% job-applies

with +123% PCH in notifications, resulting in overall marketplace

wide lift of +1.45% PCH, and +0.43% unique applies.

5.5 Job Recommendation Candidate Selection
Experiment setup: Retrieval query consisting of many boolean

clauses are re-ranked [7] to trade-off latency, system cost, and preci-

sion/recall. Baseline productionmodel uses attributes from user pro-

file, explicit onsite actions etc. to retrieve relevant job-postings for

recommendation. It also re-ranks the clauses using a light-weight

model that optimizes for P(apply|user,job) to yield learned weights

per clause. We expand the boolean clauses with user attributes

derived from guided-search recommendation and offline SANNS

as mentioned in Section 4.4. e.g. predicted entity: ’tmt analyst’

from Table 4 is rewritten as titleId: 335 AND skillId: 986 clause to

capture jobs with ’analyst’ titles, and skills with ’tmt’ within the

investment banking industry. We experiment with three variants: 1)

replace baseline production model with entities from (fasttext+slice)

+ SANNS; extend baseline with clauses from 2) (fasttext+slice) +

SANNS, and 3) (BERT_FT+slice) + SANNS.

Results: Offline evaluation with AUC, and F1 (precision/recall)

are presented in Table 6. We observe that 1) predicted entities

clauses (alone) are marginally worse than production baseline,

8

Table 7: Online A/B test results, and business impact
Search and Discovery usecase Job-applies PCH

Personalized Query Recommendation +1.35% +0.82%
Learning to Rank in Job Search +1.46% +1.5%
Audience Expansion in Job Notifications +0.43% +1.45%
Candidate Selection in Job Recs +1.34% +0.93%

which had more sources of attributes, and feature engineering, 2)

Adding predicted entities over the baseline, significantly improves

retrieval accuracy, 3) fastText variant performed slightly better

than BERT_FT, due to the clause weights learnt were global and

not user-specific. We A/B tested fasttext+Slice, and BERT_FT+Slice

models with SANNS, extending the production baseline to observe

marginally better metrics for (fasttext+Slice)+SANNS. At 20% ramp,

these predictive entities lead to +1.34% job-applications, and +0.93%
PCH lifts. We observed increased recall, and higher job-applies from

passive job-seekers, who were exploratory in nature.

6 LEARNINGS FROM DEPLOYMENT
From an engineering perspective, we standardized the representa-

tion of user activities through language models for various down-

stream tasks. This enabled versioned development with changes

in algorithm, and update mode (daily, hourly, or near real-time) of

activity vectors, abstracted away from the downstream search and

discovery tasks. Hence, we could iterate much faster with multiple

paths to production, and impact. Diverse downstream usecases and

business impact from a single artifact of user-activity vector are a

departure from the traditional way of feature engineering through

aggregate statistics, and pooling over the past interacted items

embeddings[14]. We summarize the business impact in Table 7. We

plan to experiment these activity vectors in domain-adaptation

setting in non-job verticals e.g. LinkedIn Learning, where we want

to study how job-seeking behavior can personalize what courses

to watch, or skills to acquire.

Guiding users with relevant search suggestions in their job-

seeking journey had a ripple effect. We observed an uptick of +0.5%,

in users subscribing to these personalized suggestions as alerts.

These explicit alerts trigger relevant job-notifications, increasing

liquidity in the job-marketplace and also further personalization of

job-recommendations. With personalized clauses in the retrieval,

we observed quality of matches in job-recommendation, went up by

+3.1%, measured through explicit user feedbacks. We hypothesize

that, predicted entities based on long-term (5-chunks of activity doc-

ument) interest modeling nudge specificity in the passive job-seeker

segment, resulting in relevant job-matches. Frozen user-activity vec-

tor as global context, demonstrated ease of integration in learning

to rank task, and its adaption to SERP engagement objectives. With

neutral dismisses of notifications, liquidity improvements through

expansion of seed-set of users leveraging job-seeker similarity, was

one of the impactful experiments within job-notification system.

We observed that one can fine-tune the aggregation window to finer

interval of say recent-K activities (instead of K-chunks) to derive

in-session activity vector for real-time personalization. Towards

that end, we are working on near real-time data availability, and

inference throughput.

We note that our learnings are applicable in other recommender

systems as well, e.g. news, music, and e-commerce. These domains

also include multiple user interactions, e.g. click, view, search,

add_to_cart, purchase, review_comment, return_product, tracked

across search & discovery channels. Methods presented here pro-

vide a simple, yet effective intent representation at scale for deeper

personalization. Our XML fine-tuning task that optimizes joint-

ranking of entities (proxy for document), and queries, can be ex-

tended to multiple user-tasks involving predicting churn, life-time

value, abuse as well.

7 CONCLUSION
In this work, we proposed self-attention based language mod-

els to learn user intents and interests in the job-seeking funnel.

Under eXtreme Multi-Label (XML) classification setting, we fine-

tuned the language model to predict entities that are relevant to

user’s trail of activities. We also showed that the fine-tuning task

transfers well across multiple search and discovery tasks. Through

experiments, we demonstrated user activity vector derived from

the fine-tuned BERT model, works well for active job-seekers as

shown in job-search ranking, notifications. For passive job-seekers,

through guided query-recommendation, and job-recommendation,

we showed increased job-applies, and satisfaction as there were

higher subscription to queries as alerts, and thumbs-up feedback

on job-matches. We plan to explore graph neural networks to

model sparse sessions, and extend the language models in het-

erogeneous setting, where activities include actions beyond the

jobs-marketplace. We plan to explore linear-attention mechanisms

[4, 33], that have been shown to efficiently work with very long se-

quences. Lastly, we plan to exploit the rich structure within activity

sequences through time, and relationship between micro-behaviors.

REFERENCES
[1] Abhishek, V., Fader, P., and Hosanagar, K. Media exposure through the funnel:

A model of multi-stage attribution. In SSRN Electronic Journal (2012).
[2] Ahmad, W. U., Chang, K., and Wang, H. Multi-task learning for document

ranking and query suggestion. In Proceedings of the 6th ICLR (2018).
[3] Ahmad,W. U., Chang, K.-W., andWang, H. Context attentive document ranking

and query suggestion. In Proceedings of the 42nd SIGIR (2019), ACM, pp. 385–394.

[4] Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The long-document

transformer. arXiv preprint arXiv:2004.05150 (2020).
[5] Bennett, P. N., White, R. W., Chu, W., Dumais, S. T., Bailey, P., Borisyuk, F.,

and Cui, X. Modeling the impact of short- and long-term behavior on search

personalization. In Proceedings of the 35th SIGIR (2012), ACM, pp. 185–194.

[6] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. Enriching word vectors

with subword information. Transactions of the ACL 5 (2017), 135–146.
[7] Borisyuk, F., Kenthapadi, K., Stein, D., and Zhao, B. Casmos: A framework

for learning candidate selection models over structured queries and documents.

In Proceedings of the 22nd SIGKDD (2016), ACM, p. 441–450.

[8] Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. Learning to rank: from pairwise

approach to listwise approach. In Proceedings of the 24th ICML (2007), pp. 129–136.
[9] Carmel, D., Haramaty, E., Lazerson, A., and Lewin-Eytan, L. Multi-objective

ranking optimization for product search using stochastic label aggregation. In

Proceedings of The Web Conference 2020, ACM, pp. 373–383.

[10] Chen,W., Cai, F., Chen, H., and de Rijke, M. Attention-based hierarchical neural

query suggestion. In The Proceedings of 41st SIGIR (2018), ACM, pp. 1093–1096.

[11] Cheng, Q., Ren, Z., Lin, Y., Ren, P., Chen, Z., Liu, X., and de Rijke, M. Long short-

term session search with joint document reranking and next query prediction.

In The Web Conference (2021), ACM.

[12] Dehghani, M., Rothe, S., Alfonseca, E., and Fleury, P. Learning to attend,

copy, and generate for session-based query suggestion. In The Proceedings of the
CIKM (2017), ACM, pp. 1747–1756.

[13] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of

deep bidirectional transformers for language understanding. In Proceedings of
the NAACL (2019), pp. 4171–4186.

[14] Grbovic, M., and Cheng, H. Real-time personalization using embeddings

for search ranking at airbnb. In Proceedings of the 24th SIGKDD (2018), ACM,

p. 311–320.

[15] Gu, Y., Ding, Z., Wang, S., and Yin, D. Hierarchical user profiling for e-commerce

recommender systems. In Proceedings of the 13th WSDM (2020), ACM, p. 223–231.

9

Table 8: MIND dataset statistics

#docs

avg. tokens

per sentence
total #tokens

unique

#tokens

Pre-training 877K 47.0 870M 78K

[16] Han, F., Niu, D., Lai, K., Guo, W., He, Y., and Xu, Y. Inferring search queries

from web documents via a graph-augmented sequence to attention network. In

Proceedings of WWW (2019), ACM, pp. 2792–2798.

[17] Jain, H., Balasubramanian, V., Chunduri, B., and Varma, M. Slice: Scalable

linear extreme classifiers trained on 100 million labels for related searches. In

Proceedings of the 12th WSDM (2019), ACM, pp. 528–536.

[18] Kang, W.-C., and McAuley, J. Self-attentive sequential recommendation. In

Proceedings of the ICDM (2018), IEEE, pp. 197–206.

[19] Kenter, T., Borisov, A., Van Gysel, C., Dehghani, M., de Rijke, M., and Mitra,

B. Neural networks for information retrieval. In Proceedings of the 11th WSDM
(2018), ACM, pp. 779–780.

[20] Li, J., Wang, Y., andMcAuley, J. Time interval aware self-attention for sequential

recommendation. In Proceedings of the 13th WSDM (2020), ACM, p. 322–330.

[21] Luong, T., Pham, H., andManning, C. D. Effective approaches to attention-based

neural machine translation. In Proceedings of EMNLP, ACL, pp. 1412–1421.
[22] Malkov, Y. A., and Yashunin, D. A. Efficient and robust approximate near-

est neighbor search using hierarchical navigable small world graphs. CoRR
abs/1603.09320 (2016).

[23] Meng, W., Yang, D., and Xiao, Y. Incorporating user micro-behaviors and

item knowledge into multi-task learning for session-based recommendation. In

Proceedings of the 43rd SIGIR (2020), ACM, p. 1091–1100.

[24] Pasumarthi, R. K., Bruch, S., Wang, X., Li, C., Bendersky, M., Najork, M.,

Pfeifer, J., Golbandi, N., Anil, R., andWolf, S. Tf-ranking: Scalable tensorflow

library for learning-to-rank. In SIGKDD (2019), ACM, p. 2970–2978.

[25] Sennrich, R., Haddow, B., and Birch, A. Neural machine translation of rare

words with subword units. In Proceedings of the 54th ACL (2016), pp. 1715–1725.

[26] Shokouhi, M. Learning to personalize query auto-completion. SIGIR ’13, ACM,

pp. 103–112.

[27] Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen, J., and Nie, J.-Y.

A hierarchical recurrent encoder-decoder for generative context-aware query

suggestion. In Proceedings of the 24th CIKM (2015), ACM, pp. 553–562.

[28] Tanjim, M. M., Su, C., Benjamin, E., Hu, D., Hong, L., and McAuley, J. Attentive

sequential models of latent intent for next item recommendation. In Proceedings
of The WWW (2020), ACM, p. 2528–2534.

[29] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L. u., and Polosukhin, I. Attention is all you need. In Advances in NIPS.
2017, pp. 5998–6008.

[30] White, R. W., Bennett, P. N., and Dumais, S. T. Predicting short-term interests

using activity-based search context. In Proceedings of the 19th CIKM (2010), ACM,

pp. 1009–1018.

[31] Wu, C.,Wu, F., Ge, S., Qi, T., Huang, Y., andXie, X. Neural news recommendation

with multi-head self-attention. In Proceedings of the 9th EMNLP-IJCNLP (2019),

ACL, pp. 6389–6394.

[32] Wu, F., Qiao, Y., Chen, J.-H., Wu, C., Qi, T., Lian, J., Liu, D., Xie, X., Gao, J., Wu,

W., and Zhou, M. MIND: A large-scale dataset for news recommendation. In

Proceedings of the 58th ACL (2020), pp. 3597–3606.

[33] Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S.,

Pham, P., Ravula, A., Wang, Q., Yang, L., and Ahmed, A. Big bird: Transformers

for longer sequences. In Advances in NIPS (2020), pp. 17283–17297.
[34] Zhang, X., Zhou, Y., Ma, Y., Chen, B.-C., Zhang, L., and Agarwal, D. Glmix:

Generalized linear mixed models for large-scale response prediction. In Proceed-
ings of the 22nd SIGKDD (2016), ACM, p. 363–372.

[35] Zhou, C., Bai, J., Song, J., Liu, X., Zhao, Z., Chen, X., and Gao, J. Atrank: An

attention-based user behavior modeling framework for recommendation. In

AAAI (2017).
[36] Zhou, Y., Mishra, S., Gligorijevic, J., Bhatia, T., and Bhamidipati, N. Under-

standing consumer journey using attention based recurrent neural networks. In

Proceedings of the 25th SIGKDD (2019), ACM, pp. 3102–3111.

A REPRODUCIBILITY: MICROSOFT NEWS
RECOMMENDATION CHALLENGE

Microsoft released a large-scale dataset for news recommendation

research [32], obtained through the user-activity logs of Microsoft

News. The dataset consists of click-behavior of 1 million users

on more than 160k english news articles. Task is to re-rank the

candidate news items for given user, at a given time to maximize

clicks. There exists 4-weeks of click-history for a given user, and

system needs to predict 5th week (test-data) click-behaviors. Given

Table 9: Pointwise learning to rank baselines on MIND dataset
Feature config AUC MRR nDCG@5 nDCG@10

{u*v} 0.671 0.322 0.355 0.417

{u,v,u*v} 0.681 0.330 0.365 0.426

{u,v,|u-v|} 0.689 0.333 0.369 0.431

that 87.5% of the docs are new in the test-set, quality of news

content understanding and user interest modeling are crucial to

overall performance.

We replicate the pre-training, fine-tuning, and learning to rank

strategy, that was demonstrated on LinkedIn job-sessions dataset,

here. We treat user as a document, with sequence of clicked news

items as sequence of sentences. We concatenate tokens from {cate-

gory, subCategory, Title, Abstract} for a given news item to yield

1 sentence. Corpus statistics are provided in Table 8. We experi-

ment with subword vocab of 30k. For pre-training the BERTmodels,

we follow similar masking strategy as job-sessions dataset, except

that there are no other action_types. We set dupe_factor to 7 to

yield a total of 24M tf-records of format: [CLS] newsId1_sentence

[SEP] newsId2_sentence. We experiment with 12-layer, 256-Hidden

units, and 4-attention heads BERT config. We optimize for both

MLM+NSP loss over 20 epochs with batch_size:32, using 100 V100

GPUworkers.We observed convergence in total loss, with𝑀𝐿𝑀_𝑙𝑜𝑠𝑠 =

1.069, and NSP_loss=0.507. Overall training took 12 hours.

To replicate finetuning in XML setting, we consider wikiIds, and

category_subCategory as labels. In total, there were 40.5K labels

from train+dev sets. We considered 5 weeks of click_histories per

user, and form <input,output> pairs by predicting labels from future

clicked-items (output). We consider a minimum of 4, and maximum

of 10 clicked news items in context as input. We do a stride of 3

to sample many such pairs for a given user. Total records were

32M, out of which we randomly sampled 10K members’ instances

as dev-set. We follow similar strategy of pooling: concatenation of

mean token-embeddings from last 4-layers as user-activity vector.

In this case, we obtain 4*256=1024d vector, which are optimized for

cross-entropy loss.

Similar to the job-search ranking task in Section 4.2, we exper-

iment with tf-ranking [24] for news recommendation. We con-

struct training example with 1-positive, and random 10-negatives

(from impression candidates) to form a list_size:11. Hence, total

records for training is same as the total clicked items (non-unique)

in the provided training set. With fine-tuned BERT model we en-

code u:user_context, v:news_item to yield 2 1024d vectors. As

simple baselines, we took hadamard product u*v as feature con-

catenation layer, along with other variations: {u,v,|u-v|}, {u,v,u*v}.

This is followed by 4-fully-connected layers with hidden-units of

[512,256,256,256]. Architecture is optimized using pointwise loss

for 300K steps with batch_size:32. We observed that the variation

{u,v,|u-v|} had +1.7%, +2.7% lifts in AUC, and nDCG@5 respectively,

over the best single-model NRMS[31] reported. Table 9 provides a

summary of evaluation with other feature combinations. These re-

sults with their extensions and finetuned BERT model, TF-ranking

model checkpoints can be accessed
7
for further experimentation.

7
https://drive.google.com/drive/folders/1ZkXghUk_zMkcfyo-

Qkv4k0fPeCh32wOt?usp=sharing

10

	Abstract
	1 Introduction
	2 Related Work
	3 Activity Understanding Framework
	3.1 Overview
	3.2 Data Characteristics
	3.3 Unsupervised Pre-training
	3.4 Supervised Fine-tuning to Predict User Intents at Scale

	4 Search and Discovery Personalization Usecases
	4.1 Guided Query Recommendation
	4.2 Learning to Rank in Job Search
	4.3 Audience Expansion in Job Notifications
	4.4 Candidate Selection in Job Recommenders
	4.5 Unified Serving Architecture

	5 Experiments
	5.1 Job-seeking Funnel Representation Learning
	5.2 Personalized Query Recommendation
	5.3 Learning to Rank in Job Search
	5.4 Audience Expansion in Job Notifications
	5.5 Job Recommendation Candidate Selection

	6 Learnings from Deployment
	7 Conclusion
	References
	A Reproducibility: Microsoft News Recommendation Challenge

