
Personalized Embedding-based e-Commerce Recommendations
at eBay

Tian Wang
twang5@ebay.com

eBay Inc.

Yuri M. Brovman
ybrovman@ebay.com

eBay Inc.

Sriganesh Madhvanath
smadhvanath@ebay.com

eBay Inc.

ABSTRACT
Recommender systems are an essential component of e-commerce
marketplaces, helping consumers navigate massive amounts of in-
ventory and find what they need or love. In this paper, we present
an approach for generating personalized item recommendations in
an e-commerce marketplace by learning to embed items and users
in the same vector space. In order to alleviate the considerable
cold-start problem present in large marketplaces, item and user
embeddings are computed using content features and multi-modal
onsite user activity respectively. Data ablation is incorporated into
the offline model training process to improve the robustness of the
production system. In offline evaluation using a dataset collected
from eBay traffic, our approach was able to improve the Recall@20
metric by 8.3% over the Recently-Viewed-Item (RVI) method. This
approach to generating personalized recommendations has been
launched to serve production traffic, and the corresponding scal-
able engineering architecture is also presented. In an industrial
recommender system, surface rate which is defined as the percent
of user page views that result in recommendations being displayed,
is an important metric. Initial A/B test results show that compared
to the current personalized recommendation module in production,
the proposed method increases the surface rate by ∼6% to generate
recommendations for 90% of item page views.

CCS CONCEPTS
• Computing methodologies→ Learning from implicit feed-
back; Neural networks; • Information systems → Personal-
ization; Information retrieval; Recommender systems.

KEYWORDS
deep learning, personalization, recommender systems, e-commerce,
cold-start

ACM Reference Format:
Tian Wang, Yuri M. Brovman, and Sriganesh Madhvanath. 2021. Personal-
ized Embedding-based e-Commerce Recommendations at eBay. In Proceed-
ings of KDD ’21. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14-18, 2021, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Screenshot of an eBay recommendations module
where the user has been previously looking at games.

1 INTRODUCTION
Generating product recommendations for users is commonplace
in e-commerce marketplaces. The eBay marketplace, with over 1.6
billion live items and over 183 million users, presents a unique set
of challenges when it comes to generating recommendations. Tra-
ditional collaborative filtering and matrix factorization methods [1]
produce poor results given the scale and extreme sparsity of eBay’s
user-item matrix [12]. With millions of new items listed daily, the
cold start problem affects a substantial fraction of the inventory.
Furthermore, over half of the live items are single quantity, that is,
they can be purchased by at most one buyer. After being purchased,
items are removed from the site, and no longer accessible to users.
Consequently, implicit user feedback signals such as clicks and
purchases are extremely sparse. In this paper, we describe how we
attempt to address these unique challenges to build an effective
recommender system.

Generally speaking, e-commerce recommendationsmay be driven
purely by the shopping context or they may be personalized for a
user based on a user profile. On an item page in an e-commerce
marketplace, the 𝑠𝑒𝑒𝑑 item provides strong indication of a user’s
shopping mission that may be used to guide the generation of rec-
ommendations. Indeed, there are several recommender systems
based on the seed item context that are deployed at eBay [3, 4, 12].
However, on other landing pages such as the homepage, such seed
item context is missing. There may be other occasions as well
where we need to provide personalized recommendations for the
user in the absence of a seed item, and the signal for generating
recommendations is primarily available user information. Such
"personalized recommendations" are our primary concern in this
paper. Figure 1 depicts a screenshot of an eBay recommendations
module ("sponsored items based on your recent views") where the
input is primarily taken from a user’s activity on the marketplace.

Information about a user to generate a profile may be captured
explicitly, by asking the user to fill out a survey as part of onsite
registration, or implicitly, e.g. by parsing the user’s shopping history.
Although explicit methods directly capture the user’s interests,
there are several limitations with this approach: an exhaustive set

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD ’21, August 14-18, 2021, Singapore Tian Wang, Yuri M. Brovman, and Sriganesh Madhvanath

of potential interests is difficult to curate, user participation tends to
be low, the input can be highly incomplete, and long-term interests
may not capture specific short-term shopping missions. Due to
these limitations, generating a user profile of interests is commonly
performed using implicit user interaction data.

In this paper, we propose to model users as embeddings based
on implicitly observed user shopping behavior. Using a two-tower
deep learning model architecture [8], one tower for items and one
for users, users and items are represented as points in the same
vector space. In order to address the data sparsity and cold-start
challengesmentioned above, (i) items are represented using content-
features only, and (ii) we expand the set of implicit user signals to
incorporate multi-modal user onsite behaviors such as item clicking
and query searching. Once trained, a k-nearest neighbor (KNN)
search using a user embedding is used to generate a set of item
recommendations for the user that reflect his or her implicit shop-
ping behavior. At runtime, an additional Learning-To-Rank (LTR)
model may be applied to this candidate item set in order to improve
conversion, as was done in the work by Brovman et al. [4]. How-
ever this paper primarily focuses on the method for generating
personalized recommendation candidate items. And since deploy-
ing a deep learning based recommendation model to a large scale
dynamic industrial marketplace environment involves non-trivial
engineering challenges, we also discuss details of our production
engineering architecture. In summary, we contribute methods and
techniques for:

(i) generating content-based item embeddings to address the
cold-start problem

(ii) generatingmulti-modal user embeddings from various onsite
events, such as item views and search queries

(iii) selectively dropping out training data to increase production
model robustness

(iv) utilizing cluster-based KNN algorithm to increase recom-
mended item diversity

(v) deployment of the model and end-to-end recommender sys-
tem to eBay’s large scale industrial production setting

This paper is organized in the following manner. Section 2 sum-
marizes relatedwork from academia as well as industry.We describe
the proposed core model architecture in Section 3. The dataset as
well as the offline experiments to evaluate the model are presented
in Section 4. To analyze the model robustness in production environ-
ment, we conduct user data ablation analysis, and propose solutions
to improve model performance. We then turn our attention to the
model prediction stage in Section 5, cover retrieval as well as the
production engineering architecture and discuss empirical A/B test
results. Finally, we present a summary of this work and discuss
future directions in Section 6.

2 RELATEDWORK
The generation of personalized recommendations is a well studied
problem in both academia and industry. Among the most popular
techniques are matrix factorization models (e.g. [18, 22, 27]) which
decompose a user–itemmatrix into user and itemmatrices, and treat
recommendation as a matrix imputation problem. Despite seeing
success in the Netflix competition for movie recommendation [22],
traditional matrix factorizationmodels require unique user and item

identifiers, and do not perform as well in a dynamic e-commerce
marketplace where existing items sell out and new items come
in continuously. Utilizing content features such as the item title
text becomes essential for tackling data sparsity and cold-start
issues, and various methods have been proposed to address this
within the matrix factorization framework. For example, Content-
boosted collaborative filtering [23] uses a content-based model to
create pseudo user-item ratings. Factorization machine [26] and
SVDFeature [5] directly incorporate user and item features into the
model.

More recently, neural networks have been used to model more
complex content features and combine them in a non-linear fashion.
Covington et al. [8] proposed two-tower neural networks to embed
users and items separately, and applied it to the task of generating
video recommendations. He et al. [16] explored the use of a non-
linear affinity function to replace the dot product between the
user and item embedding layers for improved model capacity. Zhu
et al. [33] and Gao et al. [13] further extended the idea by using
graph structures for candidate recall and scaling the non-linear
affinity function for an industrial setting, for e-commerce and video
recommendations respectively. Our work takes inspiration from
these efforts and the practical challenges and limitations posed by
the eBay marketplace.

There is a different but related line of work focusing on using
neural networks for LTR, such as Deep and Wide [6] and DIN [32].
However, our work is is aimed at tackling the core candidate recall
retrieval problem in an industrial setting, with the primary goal of
efficiently selecting small groups of relevant items from a very large
pool of candidate items. As mentioned earlier, an LTR model may
be applied to this candidate item set to improve user engagement
and conversion.

3 MODEL
Our proposed approach for personalized recommendations is based
on training a two-tower deep learning model to generate user em-
beddings and item embeddings at the same time. The architecture
of the model is as shown in Fig. 2, and described in detail below. We
also mention the impact of adding specific model features to our
primary offline model performance metric, Recall@K, described in
detail in Section 4.3.

Following the work by Covington et al. [8], we model generat-
ing recommendations as a classification problem with the softmax
probability:

𝑃 (𝑠8 |𝑈) =
𝑒W (v8 �u)˝
9 ∈+ 𝑒

W (v9 �u)
, (1)

where u ∈ R� is a 𝐷-dimensional vector for the embedding of
user 𝑈 , v8 ∈ R� is a 𝐷-dimensional vector for the embedding of
item 𝑠8 , 𝛾 is the affinity function between user and item, and 𝑉 is
all items available on eBay. As 𝑉 could contain billions of items,
it is infeasible to perform a full-size softmax operation. Negative
sampling has to be used to limit the size of 𝑉 , and we will discuss
this further in Sec. 4.2. The whole model is trained to minimize the
negative log-likelihood (NLL) of observed user clicks in the dataset.
Next, we discuss the details of how eBay items are encoded by the
model.

Personalized Embedding-based e-Commerce Recommendations at eBay KDD ’21, August 14-18, 2021, Singapore

Figure 2: Model architecture with recurrent user representation.

3.1 Content-based Item Embedding
In the eBay marketplace, an item corresponds to a listing (or offer)
of something for sale from a seller. In order to address the cold-start
problem, an item in our model is represented not as a unique identi-
fier (item id), but solely by using its content-based features such as
item title, category (e.g mobile phone), and structured aspects (e.g
brand: Apple, network: Verizon, etc.). We chose not to incorporate
historical item-behavior features (e.g. historical Click-Through-
Rate, Purchase-Through-Rate) in our model. These features are not
applicable to cold-start items and are constantly changing by their
very nature, creating additional engineering complexity for storage
and retrieval when building a large-scale production system.

For title and aspect features, we tokenize and convert raw text
into token embeddings with embedding size 𝐷C4GC , and use the
Continuous-Bag-of-Words (CBOW) [24] approach to generate title
and aspect feature representations. The vocabulary for the title
feature consists of approximately 400K tokens and is gathered from
eBay item titles as opposed to a generic English language corpus.
This allows us to better capture the distribution of item title tokens
in the eBay marketplace, which is drastically different from the
traditional English language, as is demonstrated in the work by
Wang and Fu [30]. Tokenization is comprised of replacing any
character that is not a-Z or a number with whitespace, and splitting
by whitespace. The vocabulary for aspect features comes from the
existing production database and contains around 100K aspect
tokens. For the item category feature, we index the category values
and map them into an embedding space of size 𝐷20C46>A~ using a
lookup table. All of the embedding tables are trained from scratch
with random initialization from the standard normal distribution
N(0, 1).

After mapping all item features into a continuous space, item
feature embeddings z8 are concatenated and passed through a MLP

with 𝐿 hidden layers, 𝐻 hidden dimensions, and Rectified Linear
Units (ReLU) [14] as the non-linear activation function, to generate
a 𝐷-dimensional item embedding v8 :

z8 = concat(ztitle8 , zaspect
8

, zcategory
8

),
ṽ8 = MLP(z8) .

v8 =
ṽ8

| |ṽ8 | |

(2)

The item embedding v8 is normalized to unit length. We now turn
our attention to the user tower part of the model.

3.2 Multi-Modal User Embedding
A user’s activity on an e-commerce marketplace is not limited to
only viewing items. A user may also perform actions such as mak-
ing a search query, adding an item to their shopping cart, adding an
item to their watch list, and so on. These actions provide valuable
signals for the generation of personalized recommendations. In this
work, we have attempted to create a generic framework to incor-
porate such "multi-modal" user activity into the model. We have
chosen to start with item viewing and the search query user actions
as representatives of item-based events and query-based events
respectively, since these are the quintessential online shopping
activities.

Item views/clicks are the most common form of implicit user
feedback for an e-commerce marketplace, and generate large vol-
umes of training data. For an item-based event 𝑧8 , we first map
the corresponding item 𝑠I8

to the corresponding embedding vI8
as

described in Sec. 3.1, and then concatenate it with a 4-dimensional
vector eI8

representing its event type.
User searches are a valuable signal for a recommender system

as they are strong indications of explicit user interest or shopping

KDD ’21, August 14-18, 2021, Singapore Tian Wang, Yuri M. Brovman, and Sriganesh Madhvanath

mission. In order to encode this user action into our framework,
we model each search query as a "pseudoitem" with the actual
query text taking place of the item title, and the "dominant" query
category (predicted using a separate model) taking place of the item
category, and the aspects left empty. The event type embedding
is concatenated to the item-based embedding. Adding this search
query signal to the model resulted in a ∼4% improvement in our
offline validation metric, Recall@20.

We denote for each user event 𝑧8 , its corresponding vector rep-
resentation 𝐸 (𝑧8) as:

𝐸 (𝑧8) = concat(vI8
, eI8

) (3)

We explored different methods of generating a user embedding
for a given user𝑈 with onsite activity 𝑍 = {𝑧1, ..., 𝑧=}.

3.2.1 Continuous Bag-of-Events Representation. The first approach
is to bag all the event embeddings into a single vector by averaging
over all embeddings. After combining all events into a single vector,
we use a MLP layer with 𝐿 layers, 𝐻 hidden dimension, and ReLU
non-linear activation functions to generate a 𝐷-dimensional user
embedding u:

ũ = MLP(1
𝑛

=Õ
8=1

𝐸 (𝑧8)),

u =
ũ

| |ũ| |

(4)

Continuous Bag-of-Events is the simplest representation of user
activity, however, in this approach, the ordering of the events does
not affect the outcome.

3.2.2 Recurrent Representation. In order to integrate the ordering
information of user historical events, we also experimented with
using a recurrent neural network to process the sequence of event
embeddings. We start with gated recurrent units [GRU, 7], which
have the update rule hC = 𝜙 (xC , hC−1) defined by:

rC = 𝜎 (WAxC + UAhC−1)
uC = 𝜎 (WDxC + UD (rC ⊙ hC−1))

h̃C = tanh(WxC + U(rC ⊙ hC−1))

hC = (1 − uC) ⊙ hC−1 + uC ⊙ h̃C ,

(5)

where 𝜎 is a sigmoid function, xC is the input at the 𝑡-th timestep,
and ⊙ is element-wise multiplication.

We initialize the GRU recurrent hidden state l0 as 0. For each
event 𝑧C in the user history 𝑍 , we feed the corresponding event
embedding into the GRU cell in sequence as input in each timestep:

lC = 𝜙 (𝐸 (𝑧8), lC−1),
l0 = 0.

(6)

The 𝐷-dim user embedding u is generated by taking the average
over output vectors from all GRU steps:

ũ =

˝=
8=1 l8
𝑛

,

u =
ũ

| |ũ| |

(7)

Compared to the Continuous Bag-of-Events user representation,
recurrent user representation has access to the order of user activity,

and in principle can better relate user relevance feedback to the
user’s interaction history. In our experiments, using this recurrent
user representation in our model resulted in a ∼5% gain in our
offline Recall@20 metric.

3.3 Affinity function
The affinity function 𝛾 (v8 , u) between user 𝑈 and item 𝑠8 is con-
structed by the dot product between the user and item embeddings.
As user and item embeddings are normalized to have unit length
(| |u| | = 1, | |v8 | | = 1), the dot product score between any pair of
embeddings is constrained to have a value between -1 and 1. This
essentially limits the capability of the model to distinguish positive
items from negatives items. In order to address this, we added a
temperature 𝜏 [31] term to our affinity function described in Eq. 1
as follows:

𝛾 (v8 , u) =
v8u
𝜏
. (8)

The temperature hyperparameter was tuned to maximize the re-
trieval metric, Recall@k. In our experiments, we found that 𝜏 has a
large impact on the performance of the trained model. By tuning 𝜏
on the validation set, we are able to increase Recall@20 by ∼150%.

4 DATASET & EXPERIMENTS
In this section, we describe the dataset we created to train our
model, the importance of negative sampling during the training
process, as well as the offline experiments performed to evaluate
the effectiveness of the model.

4.1 Experimental Dataset
Since we treat the recommendation task as a classification problem
(Eq.1), in order to train our model, we require positive and negative
samples of items, where positive samples represent items relevant
to the user and their shopping journey at impression time. In our
e-commerce setting, an impression is defined as a single instance
of an item page view by a user. eBay’s e-commerce site (and mobile
apps) features millions of item pages corresponding to active items,
and each page contains recommendations for other items, organized
into horizontal modules representing "similar items", "related items",
"seller’s other items", "items based on recent views" and so on. These
recommendations are typically powered by module-specific recall
and ranking stages. Each module presents multiple items (up to 12
on desktop web), and there may be as many as 6 such modules on
each item page, distributed along the length of the page.

In order to collect positive and negative data samples, we looked
at implicit user interactions with these merchandising recommen-
dation modules on eBay’s item pages, captured in the form of offline
log data. Only those item page impressions that had a recorded click
event on a recommendation module were considered for positive
and negative data samples. Recommended items across recommen-
dations modules that were clicked on by a user were selected as
positive examples for the model target. Click events were chosen
due to the volume of available data, however, other signals such
as purchases may also be used. Recommended items that were not
clicked on were treated as negative examples. Since clicking on
a recommended item causes a new item page to be loaded, each
item page impression typically resulted in one positive and multi-
ple negative samples. As we shall discuss in the next section, the

Personalized Embedding-based e-Commerce Recommendations at eBay KDD ’21, August 14-18, 2021, Singapore

sampling strategy used for negative examples is critical to achieve
good model training performance.

The data needed for the user tower was gathered over a 30
day period going back from a given page impression, and consists
of up to 450 user events. All of the positive and negative items
were enriched with necessary metadata about category, title, and
aspects using offline tables. A typical training run would consist
of around 10 million page impressions gathered from 8 days of
data. A validation set with approximately 110K page impressions
was collected following the end of the training data time frame, in
order to avoid information leakage across training and validation
sets. In order to avoid biasing the outcome towards a few users
with high engagement, a given user was only allowed to contribute
to one page impression in the training data and validation data.
Therefore, we had 10 million unique users and 110K unique users
in our training and validation datasets respectively. In order to
better capture the distribution of users and their diverse shopping
patterns, data was collected from logs from all of eBay’s platform
experiences: desktop web, mobile web, and iOS and Android native
apps.

4.2 Negative Sampling
As previously mentioned, the number of available items |𝑉 | on
the eBay marketplace is on the scale of one billion, therefore it is
infeasible to perform a full-size softmax operation as defined in
Eq.1. We experimented with two approaches for sampling negative
examples.

4.2.1 Observed Un-Clicked Item. In this approach, on the item page,
we take the item(s) clicked on as positive, and a subset of the items
that were impressed but not clicked on as our negatives. Specifically,
each positive item is paired with 8 un-clicked negative items. This
approach failed in our initial model training, resulting in overfitted
models that were unable to generalize. The main reason for this
is that on the item page, all of the impressed items from current
recommendation modules are very similar to the seed item, and
this leads to the effect that the model is unable distinguish positive
from negative examples utilizing content-based item features.

4.2.2 In-batch Random Negative Sampling. We then experimented
with using random items as negatives. Rather than randomly sam-
pling items from the whole item pool (billions of items), we use
in-batch negative sampling [17] by using the impressed but un-
clicked items from other training examples within the same batch
as negatives. This approach gives us a less complex and more effi-
cient sampling strategy. This approach has some similarities with a
popularity-based sampling approach, as the likelihood of an item
serving as a negative sample is proportional to the number of times
this item is presented to a user.

4.3 Evaluation Metrics
We experimented with multiple evaluation metrics to measure
model performance using our offline validation dataset. Given the
similarity of our problem to the ranking problem in the information
retrieval setting, we considered several metrics commonly used
for ranking problems such as Normalized Discounted Cumulative
Gain (NDCG), Recall@k, Precision@k, and Mean Reciprocal Rank

Symbol Hyperparameter Description Value

𝐷 Item/User embedding dimension 64
𝐷C4GC Text-based feature dimension 64
𝐷20C46>A~ Category feature dimenstion 64
𝐿 Number of hidden layers in MLP 3
𝐻 Hidden dimension in MLP 64
𝜏 Temperature in affinity function 0.1

Table 1: Model hyperparameter settings.

(MRR) [11]. As mentioned in the previous section, we typically
have only 1 positive in each page impression, therefore it becomes
important to measure whether or not the positive recommenda-
tion is in the top k results. We therefore ultimately chose to use
Recall@k as our primary evaluation metric, for 𝑘 = 1, 5, 10, 20, 40.
For P impressions, the metric is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
1
𝑃

%Õ
8=1

relevant items @ k
total relevant items

(9)

For an industrial recommender system, it is important to surface
the most relevant recommendations at the very top of the ranking
since the user may only be shown (say) 5 recommendations via the
user interface and would not engage with other recommendations.

4.4 Model Training
We used the PyTorch [25] deep learning framework to implement
the coremodel. Additionally, we utilized the PyTorch-Lightning [10]
framework which shortened development iterations and standard-
ized the training loop so that it was seamless to transition the model
between different CPU and GPU training environments. We chose
the Adam optimizer [21] with a 0.01 learning rate. The gradient
clipping parameter, set to 0.001, was essential in stabilizing the
gradient in the recurrent part of the network, which spanned sev-
eral hundred steps. We chose to sample 3000 negatives for each
positive item, and use 600 as our batch size to maximize GPU uti-
lization. Finally, we trained the model with 10 epochs over our data
to reach convergence of the evaluation metrics. Model hyperparam-
eters were selected considering production storage constraints and
model performance on the validation set. The chosen settings are
reported in Table 1.

4.5 Offline Evaluation
As an offline baseline recommendation method for comparison, we
used Recently Viewed Items (RVI), which recommends items that
a user has recently viewed ranked by the viewed item’s recency.
Although this method is simple and does not use a collaborative
filtering (CF) based approach, RVI is widely used as away of generat-
ing personalized recommendations in production systems. It is also
a difficult baseline to beat in terms of generating user engagement,
given that these are items the user has engaged with recently. The
works of Song et al. [28] and Wang et al. [29] show approaches sim-
ilar to RVI to be strong baseline methods, outperforming CF-based
methods.

We evaluated our best model, which used a recurrent user rep-
resentation based on item views and search query events, and the

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Content-based Item Embedding
	3.2 Multi-Modal User Embedding
	3.3 Affinity function

	4 Dataset & Experiments
	4.1 Experimental Dataset
	4.2 Negative Sampling
	4.3 Evaluation Metrics
	4.4 Model Training
	4.5 Offline Evaluation
	4.6 Data Ablation Analysis and Model Robustness

	5 Model Prediction
	5.1 Retrieval
	5.2 Production Engineering Architecture
	5.3 Online Evaluation

	6 Summary and Future Work
	Acknowledgments
	References

