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ABSTRACT
Relevance and attractiveness are two important attributes of search

ranking results. While these two attributes are well-aligned for

simple (query, result) pairs, they start to diverge for more nuanced,

sophisticated pairs, especially when click-bait elements enter the

result presentation.

In this work, we explore how to jointly optimize both objectives

in a state of the art ensemble framework, the multi-gate mixture

of experts (MMoE) model, with explicit expert choice for differ-

ent objectives. We also compare with less explicit expert gating

mechanism.

In order to adequately quantify the model improvements, we

introduce the notion of bi-metric linear AUC that takes into account

both relevance and user preference metrics under a one-parameter

family of model scores, which generalizes the usual ROC or Pre-

cision/Recall AUC. We argue that these fine-grained metrics are

better aligned with typical search engine business requirements.

Due to the scarcity of relevance labels, we take a distillation

approach, relying on state of the art NLP models such as BERT

to produce high quality relevance predictions as labels. To dif-

ferentiate among multiple degrees of relevance, we experiment

with several extensions of cross entropy losses in order to cap-

ture the linear ordering of the relevance labels as well as their

multi-categorical nature. The experimental results shows the new

semi-explicit MMOE model via heterogeneous task learning of-

ten achieve the best performance. Finally, we successfully push

the newly proposed model into a real-world online e-commerce
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search system. We find this model create more business value for

the company by helping the user find the item he or she wants to

buy more quickly. The source code of our work is publicly available

at https://github.com/user8831222/HMMoE.

KEYWORDS
multi-task learning, mixture of experts, relevance estimation

ACM Reference Format:
Ziyang Liu, Junqing Chen, Yunjiang Jiang, Yue Shang, Wei Xiong, Sulong

Xu, Zhaomeng Cheng, Bo Long, Lingfei Wu, Yun Xiao, and Di Jin. 2021.

Semi-Explicit MMoE via Heterogeneous Multi-Task Learning for Ranking

Relevance. In KDD ’21: ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, August 14–18, 2021, Virtual. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
For ad-hoc information retrieval, relevance estimation, directly af-

fecting which items will be shown on the result page, plays an

important role in the ranking model. In the last decade, neural-

based deep models have been widely applied in the real-world

search system or recommendation system. There are two clear re-

search routes among them: the first one focuses on the relevance

learning [1–4] while the other is oriented by the user behavior

modeling [5, 6]. In the offline model training phase, relevance learn-

ing usually uses the relevance annotations by external assessors

as supervised labels. Different from it, the user behavior modeling

usually uses the user click-through rate or user conversation rate

as the supervised information in order to simulate the real user

feedback.

In a specific application scene such as web search or e-commerce

search, user behavior feedback typically deviates from semantic

relatedness[7]. A straightforward example of a real e-commerce

search can be seen in Figure 1. Although the item of lighter fluid is

not semantically equal to lighter, it satisfied more user’s purchase

needs and won more users’ satisfaction than other items. Hidden

purchase intention implied in the query phase, click-bait elements

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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The item ranked in the 6th

position is about zippo lighter
fluid, which has 440k comments.

Query is ‘zippo lighter’

The item ranked in the 9th

position is about zippo lighter
fluid, which has 42k comments.

Figure 1: A real example in the e-commerce search. The
query is ‘zippo lighter’. Apart from lighter, the top 10 listed
items also include lighter fluid (surrounded by the red
frame). Lighter fluid is not semantically equal to lighter, but
it has a high sales volume which is proportional to the num-
ber of comments.

in the listed items and other elements will result in the final mis-

matching phenomenon, which happens in the relevance and user

feedback.

An accurate and satisfactory e-commerce search system should

consider item relevance and user preference feedback at the same

time. Many studies[8–10] investigate the relationship between the

user behavior model and evaluation metric, and propose some more

sophisticated metrics of the search system. For example, C/W/L

framework[8] formalizes the connections between the user behav-

ior model and evaluation metric.

Recently, multi-task learning is proposed, which integrates at

least two different tasks into the same learning objective. A single

task is noisy, but multi-task learning (also can be viewed as one kind

of data augmentation [11]) mitigates the noise by comprehensively

fitting multiple tasks, and thus commonly outperforms the single-

task learning. Two representative works in multi-task learning are

a mixture of experts [12] (MoE) and multi-gate mixture of experts

[13] (MMoE). The main difference between MoE and MMoE is

the number of gating network: MoE uses one gating network to

select which experts to perform computations, while MMoE allows

different tasks to select different experts.

Many earlier work demonstrates that MMoE indeed can jug-

gle both tasks of relevance learning and user behavior modeling.

However, homogeneity of tasks is a requirement in existing MMoE

applications, making it inflexible to solve heterogeneous tasks that

are ubiquitous in the real application scene. For example, the origi-

nal MMoE can solve two pointwise-data tasks in which one is for

click-through rate (CTR) prediction and the other is for click con-

version rate (CVR) prediction. But for the pointwise-data task (such

as relevance learning) combined with the pairwise-data task (such

as user preference learning), the original MMoE cannot provide an

effective solution.

In summary, when usingMMoE for ranking relevance estimation,

the following three main problems still exist:

• Without considering partially ordered user behavior
feedback. User preferences of items are most often relative:

a click on item A does not mean item B is irrelevant or of low

quality, but only that the current user prefers item A slightly

more than item B. Furthermore, the positive feedback events

are very sparse among all the displayed results, resulting

in serious class imbalance. Thus the typical pointwise ar-

chitecture in relevance learning is unsuitable for preference

learning.

• No fair metric to balance relevance learning and pref-
erence learning. Current models [1–3] use human-labeled

relatedness scores (maybe from 1 to 5, bigger number means

higher relevance) or user feedback signals (such as click,

purchase or wish-list behaviors) as the training label, the

underlying assumption being that the definition of relevance

is completely dependent on the choice between these two

labels. Typically semantic relevance score is used as a filter

while user feedback prediction dictates the final ranking. We

argue however such a strategy is sub-optimal and a mixed

ranking strategy yields better precision and recall.

• Weak interpretability of MMoE. In MMoE framework,

the dynamic gating network is applied to optimize each

learning task. The whole updating process of the gating

network is like a black box, we cannot control its evolution

and even cannot interpret its final predictions sometimes. In

an e-commerce search, understanding the functional role of

each expert model is helpful for subsequent data and training

improvement, even though it is only a small step towards

complete model interpretability.

To tackle the above problems, in this paper, we first investigate

the relevance judgment based on human assessors. In a real-world

scene such as e-commerce search, we not only hope that search

system can show the most relevant items to users, but also that

users would click and even purchase the displayed items in the

drop-down list. Based on these requirements, we propose a new

relevance judgment metric which synthetically takes into account

the element of semantic relatedness between query and item, and

the element of user behavior feedback.

Following the new metric, we then propose an improved MMoE

to deal with two heterogeneous tasks represented by pointwise data

and pairwise data respectively. The pointwise-data task captures

the semantic match feature, while the pairwise-data task captures

the partial order relation of user behaviors. In offline experiments,

we compare the different benefits from homogeneous task leaning

and heterogeneous task learning.

Another pain point of existing MMoE frameworks is that they

apply implicit invocation to multi experts. To make MMoE’s expert

selection process more interpretable and adapt with the feature

of e-commerce search, we redesign the gating network using two

strategies: explicit invocation (freezing the gating network’s output)

and semi-explicit invocation (freezing the gating network’s input).

In experiments, we compare the effects brought by both settings and
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verify the advantage of semi-explicit gating networks. We hope that

this work can provide some help for studying a more interpretable

MMoE model, even multi-task learning.

Our main contributions are three-fold:

1. We develop a new relevance evaluation metric, which can mea-

sure the relevance degree from the semantics and online feedback

in a more holistic way. This metric is helpful to build a reliable and

attractive search system, and also helps the subsequent researchers

better study the topic of ranking relevance according to such a new

measurement.

2. We overcome MMoE’s intrinsic limitations of the homoge-

neous task processing and implicit expert invocation, and thus

design a strengthened MMoE, which can well deal with heteroge-

neous tasks, including label sources and training example format,

and have good interpretability.

3. Finally, by thorough comparison experiments on a large-scale

public dataset and in-house dataset, we verify that 2 indeed im-

proves the metrics introduced in 1, along with other traditional

metrics.

2 RELATEDWORK
2.1 Works on the search relevance metric
Three elementary metrics for binary classification tasks are preci-

sion, recall, and accuracy. While accuracy can be computed inde-

pendently on how mini-batches are chosen, precision and recall

depend on the choice of mini-batch.

Note that the context of user feedback data such as clicks and

orders, labels are naturally binary and all three metrics above are

commonly used ([14] §4.1).

We can construct higher order metrics based on these such as

ROC AUC and precision/recall AUC when we fix mini-batches [15].

For human labels, since they are not necessarily binary, the above

metrics do not capture the full range of label, unless we divide the

labels based on some arbitrary threshold. Instead, it is common to

use mulit-labeled metrics such as NDCG [10] and ERR [9], both of

which are mini-batch dependent (or more precisely, session-wise).

Using the equivalence between Mann–Whitney U test and ROC

AUC [16], a natural generalization of the latter can also be defined

in this context, namely the Kendall’s Tau metric [17]. However, this

has not been widely adopted presumably due to its mathematical

obscurity. On the other hand, pointwise metrics with non-binary

ordinal labels are highly uncommon since it would require some

arbitrary choice of label transformation.

The literature on how to combine two or more different metrics

into one is relatively sparse. [18] proposes counting the fraction

of unanimous preferences by all the metrics as the final metric

for each predictor. This works well when the metrics consist of

binary components, which exclude batch-sensitive metrics like

AUC, NDCG. Furthermore, it does not measure the performance of

a parametric family of predictors.

Although these evaluation metrics have achieved some success

in guiding how to design a good user behavior model, they just

simulate user behaviors by continuously adjusting the computation

method of relevance score. We argue that semantic relevance and

user feedback are associated variables, so we design a new metric

integrating both two variables together.

2.2 Deep Semantic Match
Representation-based methods and interaction-based methods are

two kinds of classical semantic match works. The representation-

based methods include DSSM [19], MVLSTM [20], ARC-I [2] and so

on. The interaction-based methods include ARC-II [2], DRMM [21],

MatchPyramid [1], K-NRM [22], DRMM-TKS [21], Conv-KNRM

[23] and ESIM [24]. Duet model [3] utilizes both of the represen-

tation embedding and interaction embedding at the same time.

In a real application, the representation-based methods calculate

query’s and document’s (or title’s) embedding in the offline phase

and calculate their similarity score in the online phrase. While the

interaction-based methods can capture more detailed match sig-

nals between query and document than the representation-based

methods, they cannot calculate query’s and document’s embedding

in advance and thus limit their online application.

In addition, the knowledge distillation frameworkwith the teacher

model of the pre-trained NLP models is popular, the representa-

tive examples among these are Tiny-BERT [25], DistilBERT [26]

and BERT2DNN [4]. All of these methods use lightweight student

models to imitate the teacher model’s fitting ability. This solution

provide a open opportunity for more sophisticated model design

and exploit a new paradigm for traditional information retrieval.

2.3 Multi-Task Learning (MTL)
Neither traditional semantic match methods nor distillation frame-

work are only limited to single-task learning. Considering the ne-

cessity of relevance and user preference in the web search or e-

commerce search, researchers begin to focus on reforming the

existing model into multi-task learning. By sharing representations

between several similar tasks, Multi-Task Learning (MTL) can gen-

eralize better on the original objective task than single-task learning.

The main types of MTL include: hard parameter sharing and soft

parameter sharing [27]. Hard parameter sharing uses strictly shared

hidden layers between all tasks, while soft parameter sharing uses

different hidden layers for different tasks.

A representative work of hard parameter sharing is the Mixture

of Experts (MoE) model [12]. It uses a trainable gating network to

automatically select suitable experts for some specific tasks.

As a follow-up of MoE, Multi-gate Mixture of Experts (MMoE)

[13] model train multiple gating networks at the same time, in

order to assign different combinations of experts for different tasks.

From the viewpoint of multi-modal distribution, MMoE makes each

expert model more easily to focus its attention on capturing unique

modal distribution.

ViLBERT [28] uses the interaction form of the co-attentional

transformer layers to process image-material data and text-material

data together. VilBERT model is pretrained on two tasks: 1) masked

multi-modal modeling, i.e., inferring the semantics of masked words

or image patch; 2) and multi-modal alignment prediction, i.e., infer-

ring the relatedness between a sequence and an image.

Alibaba Taobao group proposes a Multi-IPW method [5] to con-

catenate click-through rate (CTR) task and click conversion rate

(CVR) task by parameter sharing. However, both CTR and CVR

tasks belong to the user preference learning domain. Different from

it, we integrate two different-domain tasks into the MMoE model

together.
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3 MODEL DESCRIPTION
3.1 SUM: Semantic relatedness and User

feedback Metric
Recall that for e-commerce search ranking, semantic accuracy and

user feedback popularity are both important for the business. The

former ensures smooth and reasonable user experience, while the

latter more directly generates growth and revenue.

One common way to combine two metrics into one is via some

simple bi-variate formula. A typical example is given by F1 score,

which combines precision and recall of a binary classification model

by taking the ratio of their geometric and arithmetic means:

𝐹1 =
2𝑃𝑅

𝑃 + 𝑅
.

While precision or recall alone depends heavily on the threshold

of the prediction score, the F1 score removes some of that uncer-

tainty, and presents a more balanced evaluation of model accuracy.

Inspired by the F1 score, we define a kind of relatively simple bi-

metric named as SUM (Semantic relatedness and User feedback

Metric):

SUM =
2𝑀pt𝑀pr

𝑀pt +𝑀pr

(1)

where𝑀pt and𝑀pr are respectively the metrics of pointwise-data

and pairwise-data task.

When we have a 1-parameter family of predictors 𝑃 (𝜂), indexed
by 𝜂, we can look at how the two metrics vary against one another

by sweeping 𝜂 from 0 to 1. This is the principle behind metrics such

as ROCAUC (Area Under the Curve) [29], as well as precision/recall

AUC [15], and the less well-known negative precision/recall AUC,

where the parameter𝜂 takes the role of a threshold between positive

and negative predictions. We shall abuse the notation 𝑀pt (𝜂) =

𝑀pt (𝑃 (𝜂)) and similarly for𝑀pr.

Let {(𝑀pt (𝜂1), 𝑀pr (𝜂1)), . . . , (𝑀pt (𝜂𝑛), 𝑀pr (𝜂𝑛))} be the set of
all possible pairs of the two metrics obtained by varying the model

parameter 𝜂. Let𝐻 := {𝜂1, . . . , 𝜂𝑛} be sorted in ascending order. We

can then compute the area under the piece-wise linear interpolation

using the trapezoid rule:

AUC
𝐻
pt

=

𝑛∑
𝑖=1

|𝑀pt (𝜂𝑖+1) −𝑀pt (𝜂𝑖 ) | (𝑀pr (𝜂𝑖 ) +𝑀pr (𝜂𝑖+1))
2

. (2)

Note that the formula is well-defined and agrees with geometric

intuition even if𝑀pt (𝜂𝑖 ) = 𝑀pt (𝜂 𝑗 ) for some 𝑖 ≠ 𝑗 ; in that case the

trapezoid will have zero area.

For symmetry, we define the transposed version of the above

AUC:

AUC
𝐻
pr

=

𝑛∑
𝑖=1

|𝑀pr (𝜂𝑖+1) −𝑀pr (𝜂𝑖 ) | (𝑀pt (𝜂𝑖 ) +𝑀pt (𝜂𝑖+1))
2

, (3)

Lastly we define the bi-metric linear AUC to be their average:

BML-AUC
𝐻

:=
AUC

𝐻
pt
+AUC𝐻

pr

2

. (4)

Note that the above finite sum definitions are of course the

finite-difference trapezoid approximation of the Riemann-Stieltjes

integral, where 𝑑𝑣 stands for the total variation measure under𝑀pt

and𝑀pr:

AUCpt :=
1

2

(∫
1

0

𝑀pr (𝜂)𝑑𝑣pt (𝜂) +
∫

0

1

𝑀pr (𝜂)𝑑𝑣pt (𝜂)
)

(5)

AUCpr :=
1

2

(∫
1

0

𝑀pt (𝜂)𝑑𝑣pr (𝜂) +
∫

0

1

𝑀pt (𝜂)𝑑𝑣pr (𝜂)
)
. (6)

Note also that if𝑀pt and𝑀pr are continuous of finite total variations

(e.g., Lipschitz), only one of the two integrals are needed in each of

the formulas above.

The anchor-free version of the bi-metric linear AUC is thus

defined by

BML-AUC :=
AUCpt +AUCpr

2

. (7)

The natural parameter we use for the baseline is the linear com-

bination weight between the individually trained pointwise and

pairwise model, i.e.,

𝐹𝜂 := 𝜂𝐹pt + (1 − 𝜂)𝐹pr . (8)

Similar formula applies to the two tower outputs of the HMMoE

model.

In theory, we need infinitely many 𝜂𝑖 points to compute the exact

BML-AUC, but when the two metrics𝑀pt and𝑀pr are both discrete,

such as in the case of precision/recall/accuracy or the classical ROC

AUC, a finite number of points suffices.

More precisely, let 𝑁 be the number of test examples, 𝜇pt, 𝜇pr

be the two discrete metrics, and 𝐿
pt

𝑖
, 𝐿

pr

𝑖
be pointwise and pairwise

task labels, and 𝑠𝑖 , 𝑡𝑖 be the scores of the two model outputs, for

𝑖 ∈ [𝑁 ]. In the case of AUC, each example consists of a complete

test mini-batch, such as all items under a single query. Then we

have

𝑀pt (𝜂𝑖 ) = 𝜇pt (𝐿pt𝑖 , 𝜂𝑖𝑠𝑖 + (1 − 𝜂𝑖 )𝑡𝑖 ), (9)

and similarly for 𝑀pr (𝜂𝑖 ). We only need to choose 𝜂𝑖 ’s so that

𝑀pt (𝜂), 𝑀pr (𝜂) are constant for 𝜂 ∈ (𝜂𝑖 , 𝜂𝑖+1) for all 𝑖 < 𝑛.

Let 𝐻pt and 𝐻pr be the minimal sets satisfying the above con-

dition, then 𝐻 := 𝐻pt ∪ 𝐻pr will also be a minimal set for both

metrics.

Below we present two algorithms to compute the minimal 𝐻 ’s

in the case of accuracy and ROC AUC.

Definition 3.1. An increasing collection of anchors points 𝐻 =

{𝜂1 < . . . < 𝜂𝑄 } is said to be saturated with respect to the list of

score pairs {(𝑠𝑖 , 𝑡𝑖 ) : 𝑖 ∈ [𝑁 ]} and corresponding reward functions

𝑅𝑖 if the following holds

𝑑

𝑑𝜂

∑
𝑖

𝑅𝑖 (𝑠𝑖𝜂 + 𝑡𝑖 (1 − 𝜂)) = 0, ∀𝜂 ∈ [0, 1] \ 𝐻. (10)

Given a sequence of binary labels 𝐿𝑖 ∈ {±1}, let the accuracy
reward be given by

𝑅𝑖 (𝑠) = 1𝑠𝐿𝑖>0 . (11)

Similarly we define the ROC AUC reward function

𝑅𝐵 (®𝑠) =
∑
𝑖, 𝑗 ∈𝐵

1𝑠𝑖>𝑠 𝑗1𝐿𝑖>𝐿𝑗
. (12)

Lemma 3.2. For any binary label sequence 𝐿𝑖 ∈ {±1}, 𝑖 ∈ [𝑁 ],
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Algorithm 1 Accuracy Anchors

Input: 𝑁 : the number of test examples

Input: Π := {(𝑠𝑖 , 𝑡𝑖 ) : 𝑖 ∈ [𝑁 ]}: the scores from two predictors

Output: 𝑄 ∈ N: number of Riemann sum anchors points

Output: 𝐻 = {𝜂𝑘 : 𝑘 ∈ [𝑄]}: saturated w.r.t. Π and 𝑅𝑖 .

1: 𝑘 ⇐ 1

2: 𝜂1 ⇐ 0

3: 𝐻 ⇐ {𝜂1}
4: while 𝜂𝑘 < 1 do
5: Ψ𝑖,𝑘 := 𝑠𝑖𝜂𝑘 + 𝑡𝑖 (1 − 𝜂𝑘 )
6: Δ := {Ψ𝑖,𝑘/(𝑡𝑖 − 𝑠𝑖 ) : Ψ𝑖,𝑘 (𝑡𝑖 − 𝑠𝑖 ) > 0, 𝑖 ∈ [𝑁 ]}.
7: if Δ = ∅ then
8: 𝜂𝑘+1 ⇐ 1

9: else
10: 𝜂𝑘+1 ⇐ min{𝜂𝑘 +minΔ, 1}
11: end if
12: 𝐻 ⇐ 𝐻 ∪ {𝜂𝑘+1}
13: 𝑘 ⇐ 𝑘 + 1

14: end while
15: 𝑄 ⇐ 𝑘

Algorithm 2 ROC AUC Anchors

Input: 𝑁 : the number of test examples

Input: Π := {(𝑠𝑖 , 𝑡𝑖 ) : 𝑖 ∈ [𝑁 ]}: the scores from two predictors

Input: P ⊢ [𝑁 ]: a partition of test examples into mini-batches (or

sessions)

Output: 𝑄 ∈ N: number of Riemann sum anchors points

Output: 𝐻 = {𝜂𝑘 : 𝑘 ∈ [𝑄]}: saturated w.r.t Π and 𝑅𝐵 .

1: 𝑘 ⇐ 1

2: 𝜂1 ⇐ 0

3: 𝐻 ⇐ {𝜂1}
4: while 𝜂𝑘 < 1 do
5: Ψ𝑖, 𝑗,𝑘 := (𝑠𝑖𝜂𝑘 + 𝑡𝑖 (1 − 𝜂𝑘 )) − (𝑠 𝑗𝜂𝑘 + 𝑡 𝑗 (1 − 𝜂𝑘 ))
6: 𝐷𝑖, 𝑗 = 𝑠 𝑗 − 𝑠𝑖 + 𝑡𝑖 − 𝑡 𝑗
7: Δ := {Ψ𝑖, 𝑗,𝑘/𝐷𝑖, 𝑗 : Ψ𝑖, 𝑗,𝑘𝐷𝑖, 𝑗 > 0, 𝑖, 𝑗 ∈ 𝐵 for some 𝐵 ∈ P}.
8: if Δ = ∅ then
9: 𝜂𝑘+1 ⇐ 1

10: else
11: 𝜂𝑘+1 ⇐ min{𝜂𝑘 +minΔ, 1}
12: end if
13: 𝐻 ⇐ 𝐻 ∪ {𝜂𝑘+1}
14: 𝑘 ⇐ 𝑘 + 1

15: end while
16: 𝑄 ⇐ 𝑘

(1) The output anchor points in Algorithm 1 are saturated with
respect to the score pairs Π = {(𝑠𝑖 , 𝑡𝑖 ) : 𝑖 ∈ [𝑁 ]}, and accuracy
reward sequence {𝑅𝑖 : 𝑖 ∈ [𝑁 ]}.

(2) Similarly anchor points in Algorithm 2 are saturated with
respect to Π and the batch AUC reward sequence {𝑅𝐵 : 𝐵 ∈ P},
where P ⊢ [𝑁 ] is a fixed contiguous partition of the positive
integers up to 𝑁 .

Furthermore, both algorithms terminate in finite steps.

Proof. We prove the case for Accuracy metric only. The argu-

ment for ROC-AUC is similar. First we establish finite step termina-

tion. Note that Δ𝜂𝑘 > 0 for all 𝑘 . By definition of Δ𝜂𝑘 (Algorithm 1,

line 6), for every 𝑘 ∈ N, there is an 𝑖 ∈ [𝑁 ] such that

𝑠𝑖𝜂𝑘 + 𝑡𝑖 (1 − 𝜂𝑘 ) = 0. (13)

For fixed 𝑠𝑖 , 𝑡𝑖 , (13) has a unique solution for 𝜂𝑘 unless 𝑠𝑖 = 𝑡𝑖 = 0,

which were excluded by the condition Ψ𝑖,𝑘 (𝑠𝑖 − 𝑡𝑖 ) > 0 from Oper-

ation 6. Thus there are only finitely many 𝜂𝑘 . The condition that

Δ ≠ ∅ then guarantees that the while loop eventually terminates.

To show saturation, it suffices to take some 𝑘 < 𝑄 and show that

𝑅𝑖 (𝑠𝑖𝜂 + 𝑡𝑖 (1 − 𝜂)) is constant for all 𝜂 ∈ (𝜂𝑘 , 𝜂𝑘+1) and 𝑖 ∈ [𝑁 ],
which is a stronger statement (note that we are not aiming for the

minimal saturated anchor set).

In the case of Algorithm 1, we see from the definition of Δ (line 6)

and the fact that 𝜂𝑘+1−𝜂𝑘 < minΔ, that 𝑠𝑖𝜂 +𝑡𝑖 (1−𝜂) has the same

sign for 𝜂 ∈ [𝜂𝑘 , 𝜂𝑘+1). Thus 𝑅𝑖 (𝑠𝑖𝜂 + 𝑡𝑖 (1 − 𝜂)) is indeed constant

in that interval by (11), which contains (𝜂𝑘 , 𝜂𝑘+1).
□

As a corollary, we have

Theorem 3.3. Let 𝑀pr and 𝑀pt be metrics of either accuracy or
ROC-AUC type, and let 𝐿pr

𝑖
, 𝐿pt

𝑖
be arbitrary binary label sequences.

Let 𝐻pt and 𝐻pr be the anchor points from Algorithm 1 and 2 respec-
tively,𝐻 ′ = 𝐻pt∪𝐻pr and𝐻 := 𝐻 ′∪{(𝜂𝑘 +𝜂𝑘+1)/2 : 𝑘 < 𝑄 ′}. Then
BML-AUC𝐻 as defined in (4) agrees with the following anchor-free
expression:

BML-AUC :=
1

2

(
AUCpr +AUCpt

)
=
1

4

[(∫
1

0

+
∫

0

1

) (
𝑀pr (𝜂)𝑑𝑣pt (𝜂) +𝑀pt (𝜂)𝑑𝑣pr (𝜂)

) ]
where 𝑑𝑣pt (𝜂), 𝑑𝑣pr (𝜂) stand for the total variation measure of𝑀pt

and𝑀pr respectively.

Proof. By definition of total variation integrals, they can be

arbitrarily closely approximated by finite difference sums over any

sequence of partitions of the unit interval [0, 1], provided the maxi-

mal mesh size goes to 0. So in particular we can refine the partition

given by 0 = 𝜂1 < 𝜂2 < . . . < 𝜂𝑄 = 1 from 𝐻 . By definition of

Riemann-Stieltjes,∫ 𝜂𝑘+1

𝜂𝑘

𝑀pr (𝜂)𝑑𝑣pt (𝜂) = lim

Δ𝜁→0

𝑇−1∑
𝑖=1

𝑀pr (𝜁𝑖 ) |𝑀pt (𝜁𝑖+1) −𝑀pt (𝜁𝑖 ) |,

where the limit is over all partitions 𝜂𝑘 = 𝜁1 < . . . < 𝜁𝑇 = 𝜂𝑘+1 of
[𝜂𝑘 , 𝜂𝑘+1], with the mesh size Δ𝜁 := max 𝜁𝑖+1 − 𝜁𝑖 tending to zero.

The interior points do not contribute to the right hand side sum.

If 𝜂𝑘 ∈ 𝐻 ′
, 𝜂𝑘+1 ∉ 𝐻 ′

, thus the last summand also vanishes.

Since𝑀pt is locally constant away from 𝐻 ′
, we deduce that∫ 𝜂𝑘+1

𝜂𝑘

𝑀pr (𝜂)𝑑𝑣pt (𝜂) = 𝑀pr (𝜂𝑘 ) |𝑀pt (𝜁2) −𝑀pt (𝜁1) |

= 𝑀pr (𝜂𝑘 ) |𝑀pt (𝜂𝑘+1) −𝑀pt (𝜂𝑘 ) |.
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Similarly if 𝜂𝑘+1 ∈ 𝐻 ′
, only the last summand survives, and we

have∫ 𝜂𝑘+1

𝜂𝑘

𝑀pr (𝜂)𝑑𝑣pt (𝜂) = 𝑀pr (𝜁𝑇−1) |𝑀pt (𝜂𝑘+1) −𝑀pt (𝜁𝑇−1) |

= 𝑀pr (𝜂𝑘 ) |𝑀pt (𝜂𝑘+1) −𝑀pt (𝜂𝑘 ) |.
Thus we have shown that under any refinement 𝜁 ⊢ [𝜂𝑘 , 𝜂𝑘+1],
𝑇−1∑
𝑖=1

𝑀pr (𝜁𝑖 ) |𝑀pt (𝜁𝑖+1) −𝑀pt (𝜁𝑖 ) | = 𝑀pr (𝜂𝑘 ) |𝑀pt (𝜂𝑘+1) −𝑀pt (𝜂𝑘 ) |.

The conclusion of the Theorem follows by unravelling the definition

of BML-AUC. □

In practice, we found that the number of steps required in Al-

gorithm 2 can grow quadratically with the mini-batch size. So we

choose the anchor points 𝐻 to evenly divide the unit interval [0, 1].
The final BML-AUC results are highly stable with respect to 𝐻 ,

provided it is large enough (usually |𝐻 | ≥ 10 is sufficient).

3.2 HMMoE: Heterogeneous Multi-gate
Mixture of Experts

We propose a new MoE model that is compatible with the hetero-

geneous tasks and has strong model interpretability. We call this

model HMMoE. There are four module structures in HMMoE: in-

teraction match module, 𝑛 expert networks, 𝑡 tower networks, and

𝑡 gating networks (i.e., 𝑡 tasks).

Interaction match module. For two text sequences 𝐴 and 𝐵,

the word-level interaction match calculates the dot product be-

tween their embeddings and then reshape the result into a one-

dimensional vector:

𝑀𝑎𝑡𝑐ℎ(
{
𝑬𝑖𝐴

}𝑙𝐴
𝑖=1

,
{
𝑬𝑖𝐵

}𝑙𝐵
𝑖=1

) = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 ( [𝑬1

𝐴, ..., 𝑬
𝑙𝐴
𝐴
]T×[𝑬1

𝐵, ..., 𝑬
𝑙𝐵
𝐵
])

(14)

where 𝑙𝐴 is the length of the sequence A, and 𝑬𝑖
𝐴
is the 𝑖-th word’s

embedding in 𝐴.

For the pointwise-data task, we obtain its expert networks’ input

𝑬pt by concatenating query 𝑞 and title 𝑡 ’s interaction match result,

𝑞’s sequence embedding 𝑬𝑞 and 𝑡 ’s sequence embedding 𝑬𝑡 :

𝑬pt = [𝑀𝑎𝑡𝑐ℎ(
{
𝑬𝑖𝑞

}𝑙𝑞
𝑖=1

,
{
𝑬𝑖𝑡
}𝑙𝑡
𝑖=1

) ∥ 𝑬𝑞 ∥ 𝑬𝑡 ] . (15)

Similarly, for the pairwise-data task, we calculate and obtain

its positive example’s and negative example’s results as the expert

network’s inputs:

𝑬
𝑝𝑜𝑠
pr

= [𝑀𝑎𝑡𝑐ℎ(
{
𝑬𝑖𝑞

}𝑙𝑞
𝑖=1

,

{
𝑬𝑖𝑡𝑝𝑜𝑠

}𝑙𝑡𝑝𝑜𝑠
𝑖=1

) ∥ 𝑬𝑞 ∥ 𝑬𝑡𝑝𝑜𝑠 ] (16)

𝑬
𝑛𝑒𝑔
pr

= [𝑀𝑎𝑡𝑐ℎ(
{
𝑬𝑖𝑞

}𝑙𝑞
𝑖=1

,

{
𝑬𝑖𝑡𝑛𝑒𝑔

}𝑙𝑡𝑛𝑒𝑔
𝑖=1

) ∥ 𝑬𝑞 ∥ 𝑬𝑡𝑛𝑒𝑔 ] . (17)

Expert networks. To make different groups of experts to cap-

ture the influence of different word patterns, we set 𝑁𝑝 groups of

experts where each group has 𝑁𝑒 experts. The forward pass process

of the expert networks can be represented as:

𝐸𝑖 (𝑥) = ReLU(𝐸𝑥𝑝𝑒𝑟𝑡𝑖 (𝑥)), 𝑖 = 1, · · · , 𝑁𝑝 · 𝑁𝑒 (18)

where 𝑥 ∈ (𝑬pt, 𝑬𝑝𝑜𝑠pr
, 𝑬

𝑛𝑒𝑔
pr

). 𝐸𝑥𝑝𝑒𝑟𝑡𝑖 (·) can be designed as any

neural networks, here we use multi-layer perceptron to replace it.

Gating networks. Considering the importance of relevance

learning and preference learning, we integrate the corresponding

pointwise-data task and pairwise-data task into HMMoE’s learning

objectives. Suppose the 𝑖-th expert’s output is 𝐸𝑖 (𝑥), then the input

of the poinwise-data task tower is decided by the output of the

pointwise-task gating 𝐺pt (𝑀𝑎𝑝 (𝑞)):

𝑯pt =

𝑁𝑝 ·𝑁𝑒∑
𝑖=1

𝐺pt (𝑀𝑎𝑝 (𝑞))𝑖𝐸𝑖 (𝑬pt) (19)

Similarly, the pairwise-data task tower’s input can be derived by

the output of the pairwise-task gating 𝐺pr (𝑀𝑎𝑝 (𝑞)):

𝑯
𝑝𝑜𝑠
pr

=

𝑁𝑝 ·𝑁𝑒∑
𝑖=1

𝐺pr (𝑀𝑎𝑝 (𝑞))𝑖𝐸𝑖 (𝑬𝑝𝑜𝑠pr
) (20)

𝑯
𝑛𝑒𝑔
pr

=

𝑁𝑝 ·𝑁𝑒∑
𝑖=1

𝐺pr (𝑀𝑎𝑝 (𝑞))𝑖𝐸𝑖 (𝑬𝑛𝑒𝑔pr
). (21)

To distinguish different query patterns and thus trigger the homol-

ogous experts, we use the one-hot mapping result of the original

query as the input of each gating network. Specifically, we sequen-

tially set four different word patterns: product word, attribute word,

brand word and type word. When any pattern exists in the query,

the corresponding position’s element is triggered as 1, otherwise is

0. In the in-house statistical result, these four word patterns take

up for about 98.7% of all user queries.

We design three types of gating network including implicit, semi-

explicit and explicit gating network (see Figure 3). Their difference

is the balance degree between automatic parameter learning and

frozen parameter setting. Implicit gating network has fully auto-

matic parameter learning, while explicit gating network has fully

frozen parameter setting and semi-explicit version is in the middle.

The final HMMoE model uses semi-explicit gating network setting.

We further compare the above three settings in the experiments.

Tower networks. Two tower networks are used to absorb the

outputs of the gating networks and expert network, and then trans-

form these outputs into the final logit value of. So the logit values of

pointwise-task (𝑠𝑖 ), pairwise-task (𝑠𝑖1 and 𝑠𝑖2 ) on the 𝑖-th example

are defined as:

𝑠𝑖 = 𝑇𝑜𝑤𝑒𝑟pt (𝑯pt), 𝑠𝑖1 = 𝑇𝑜𝑤𝑒𝑟pr (𝑯𝑝𝑜𝑠
pr

), 𝑠𝑖2 = 𝑇𝑜𝑤𝑒𝑟pr (𝑯𝑛𝑒𝑔
pr

) .
(22)

The whole model framework can be seen in Figure 2(b).

3.3 Model learning
Here we highlight the design on the heterogeneous task learning,

especially the pairwise-data task. The loss of the pointwise task is

defined as:

𝐿pt := −
𝑁∑
𝑖=1

[
𝑠𝑖 log(

1

1 + 𝑒−𝑠𝑖
) + (1 − 𝑠𝑖 ) log(1 −

1

1 + 𝑒−𝑠𝑖
)
]

(23)

where 𝑁 is the size of each batch and 𝑠𝑖 , 𝑠𝑖 is the groundtruth,

prediction value of the 𝑖-th example. The loss of the pairwise task

is defined as:

𝐿pr := −
𝑁∑
𝑖=1

[
𝑠<𝑖1,𝑖2> log 𝑠̃

<𝑖1,𝑖2>
+ (1 − 𝑠<𝑖1,𝑖2>) log(1 − 𝑠̃

<𝑖1,𝑖2>
)
]

(24)
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Figure 2: The comparison between the original MMoE and our proposed HMMoE. HMMoE has two main designs: heteroge-
neous tasks learning (D1) and strong interpretability (D2).
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Figure 3: Different types of gating network setting

where

𝑠<𝑖1,𝑖2> =

{
1, 𝑠𝑖1 > 𝑠𝑖2 ;

0, 𝑠𝑖1 ⩽ 𝑠𝑖2 .
(25)

To avoid the value overflow likely caused by pairwise data, we set

𝑠̃
<𝑖1,𝑖2>

=𝑚𝑖𝑛(𝑚𝑎𝑥 ( 1

1 + 𝑒𝑠𝑖2−𝑠𝑖1
, 𝜀), 1 − 𝜀) (26)

where 𝜀 is a very small value.

4 EXPERIMENTS
We demonstrate the effectiveness of HMMOE on both public Ama-

zon Review dataset and in-house dataset. We will first describe the

metrics, experiment settings and how we generate the dataset. And

then we will analyze the contribution of different component/setup

in our method, to demonstrate the effectiveness of the model de-

sign. Finally, we will have a comprehensive experiment comparison

with other neural network ranking models, to illustrate the model

performance.

4.1 Experiment Setup
4.1.1 BaselineMethod. Besides different setups of HMMOEmodels

such as single task MOE, explicit/implicit Part-of-Speech pattern,

we compare our method with state-of-the-art deep neural network

models for text pair semantic match problem, such as DSSM[19],

ARC-I [2] and ARC-II[2].

4.1.2 Evaluation Metrics and Parameter Settings. We use four eval-

uation methods to evaluate model in our experiment, including

ACC, AUC, BML-AUC and SUM(F1). We evaluated our model on

both in-house relevance and feedback data as well as a public data

set on Amazon Product Review data.

In our experiments, bothMMoEmodels have 8 experts (i.e.,𝑛 = 8)

with a single layer network, in which the size of the hidden layers

is 16. Similarly, the tower networks for each task are also 16 hidden

units. The vocabulary set is about 40k, it is generated from the

unigrams and bigrams, the size of dimension is 64. The batch-size

is 1024 and learning rate is 1e-3. For each query and item’s title, we

set a limited sequence length, the query is 10 and item’s title is 65.

Table 1: Results on Amazon dataset of HMMoE. ‘Sent’ is sin-
gle pointwise task learning, ‘Rate’ is single pairwise task
learning and ‘Sent+Rate’ is multi-task learning.

Metrics Sent Rate Sent + Rate

SentACC 0.7687 0.2328 0.7690
SentAUC 0.6229 0.5004 0.6326
RateACC 0.4607 0.5950 0.6172
RateAUC 0.4447 0.6345 0.6630
BML-AUC 0.5259 0.5390 0.6288
SUM(F1) 0.5089 0.5296 0.6239

4.2 Amazon Review Data Experiment
4.2.1 Data Generation. Although the task with heterogeneous data
is common in real world applications, it’s hard to find an available

public data. Here we construct a heterogeneous dataset from Ama-

zon Review Dataset, with task of review sentiment analysis and
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pairwise rating. For Amazon Product Review Data, it mainly in-

clude product id, text of the review, name of the product, and rating

of the product. To construct dataset containing tasks of both point-

wise and pairwise data, we construct pairwise data under the same

reviewer, by gathering reviewed products of different ratings. We

construct pointwise data by feeding the review text into a BERT

fine-tuned sentiment analysis model. The fine-tuning is performed

on a holdout shard (according reviewer id), so that the rest of the

experiments does not use this slice of data. Eventually we gener-

ate about 30 million training data. For pointwise data, the task is

to predict the sentimental polarity or ratings from review, while

for pairwise data the task is to point out which item the reviewer

preferred.

4.2.2 Experiment Results. Table 1 presents the ACC and AUC on

each task. According to the results, tasks with a single target (sen-

timent or rating score) receive the good result on metrics from

related task labels, but cannot perform well on the metrics of the

other target. However by using multiple tasks labels, as shown in

task of sentiment analysis and rating together, metrics on both task

exceed the single task results.

4.3 In-house E-commerce Data Experiment
4.3.1 Data Generation. To demonstrate the efficacy of our method

in a real industrial setting, we experiment on an in-house dataset.

We utilize historical 6-month users’ search log, constructed two

types of heterogeneous search data with the same data size.

Relevance Distillation Data. Since raw relevance labels are

much more labor-intensive to collect, we take a distillation ap-

proach, relying on the state of the art NLP models such as BERT

to produce high quality relevance predictions as labels. We collect

170m (query, item) pairs, filtered by the criterion of being clicked

at least once or skipped at least 5 times. The evaluation data uses

human labeled (query, item) pairs with a relevance label.

User Feedback Data. According to the user’s order feedback

data, we constructed the pairwise data of different ordered items

under the same query. In order to avoid cross-leakage, the pairwise

data is randomly shuffled by query divided into 90% training and

10% test set.

• It contains about 170m instances of the 5-tuple’s (𝑞𝑢𝑒𝑟𝑦,

𝑖𝑡𝑒𝑚𝑎 , 𝑖𝑡𝑒𝑚𝑏 , 𝑜𝑟𝑑𝑒𝑟_𝑐𝑛𝑡𝑎 , 𝑜𝑟𝑑𝑒𝑟_𝑐𝑛𝑡𝑏 ) pairs, where one of

the item’s 𝑜𝑟𝑑𝑒𝑟_𝑐𝑛𝑡 is 0, and |𝑜𝑟𝑑𝑒𝑟_𝑐𝑛𝑡𝑎 - 𝑜𝑟𝑑𝑒𝑟_𝑐𝑛𝑡𝑏 | ≥ 5.

• Similarly, we generate 170m (𝑞𝑢𝑒𝑟𝑦, 𝑖𝑡𝑒𝑚, 𝑖𝑠_𝑜𝑟𝑑𝑒𝑟𝑒𝑑) 3-

tuples, where the item’s 𝑖𝑠_𝑜𝑟𝑑𝑒𝑟𝑒𝑑 is 1 or 0.

4.3.2 Experiment Setups. To test whether valid this work’s motiva-

tion is, we design two parts of experiment settings. First, we want

to observe whether partially ordered user feedback is better
than point-to-point user feedback. Second, we want to observe
the effects of different types of gating networks.

4.3.3 Experiment Results. Table 2 shows the results of different

multi-expert models on the in-house data. Under the new metric of

BML-AUC and SUM(F1), HMMoE model with semi-explicit gating

network achieves the best performance compared with the other

models. MoE and MMoE model have very close performance with

HMMoE model under the relevance metric, but MoE cannot solve

Table 2: Comparison ofmulti-expertmodels on the in-house
data. ‘RelACC’ and ‘RelAUC’ are the accuracy metric and AUC
metric under the relevance learning task using relevance an-
notation data, ‘OrdACC’ and ‘OrdAUC’ are the accuracymetric
and AUC metric under the preference learning task using
user order data. HMMoE𝑖 , HMMoE𝑒 and HMMoE applies im-
plicit, explicit and semi-explicit gating network setting re-
spectively.

Types RelACC RelAUC OrdACC OrdAUC BML − AUC SUM(F1)
MoE 0.8360 0.8538 - - - -

MMoE 0.8316 0.8502 0.8147 0.8973 - -

HMMoE𝑖 0.8328 0.8517 0.8874 0.9575 0.8502 0.6940

HMMoE𝑒 0.8300 0.8415 0.8755 0.9488 0.8435 0.7000

HMMoE 0.8379 0.8550 0.8899 0.9584 0.8530 0.7092

preference learning task and the result of MMoE is far less than

HMMoE’s under the metric of preference learning.

4.4 Comparison with Deep Text Match Models
Here we compare HMMoE along with semi-explicit gating network

setting with some deep text match models on Amazon and in-house

datasets. We select three representation-based matching models

(DSSM, MVLSTM and ARC-I) and three interaction-based matching

models (ARC-II, KNRM and MatchPyramid) from a high-quality

codebase named as MatchZoo [30]. These results are shown in

Table 3. In general, HMMoE outperforms these baseline models

apart from the relevance accuracy metric on Amazon dataset. The

main reason is that multi-task learning can reduce some negative

effects of the noise in each single task.

Table 3: Comparison with deep text match model under
Amazon dataset and in-house dataset.

Models

Amazon dataset In-house dataset

SentACC SentAUC RelACC RelAUC

DSSM 0.6329 0.5030 0.7686 0.8219

MVLSTM 0.7703 0.6217 0.8052 0.7877

ARC-I 0.7688 0.6215 0.8294 0.8312

ARC-II 0.7682 0.6216 0.8165 0.8071

KNRM 0.7673 0.5895 0.8002 0.7768

MatchPyramid 0.7676 0.5970 0.8052 0.8093

HMMoE 0.7687 0.6229 0.8379 0.8550

4.5 Online A/B Testing
To demonstrate the effectiveness of the HMMoE model in the real-

world e-commerce environment, we push HMMoE online and ob-

serve continuous 14 days A/B testing results (under default sort) on

three different online channels of JD.com, including JDAPP, JXAPP

and JSAPP. Because online environment uses point-to-point rele-

vance estimation, we retain its pointwise-part network and discard

its pairwise-part network when applying HMMoE online.

The online statistical results are shown in Table 4. UV (unique

visitor)-value and UCVR (unique visitor click conversion rate) are

two chosen metrics, which measures the gross merchandise value
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generated per user session and the rate of conversion per user ses-

sion respectively. We can conclude that HMMoE achieves signifi-

cant or nearly significant gain compared to the online baseline DNN

model on all channels. The reason behind such result is HMMoE’s

fine-grained query patterns processing mechanism and mutual gain

from relevance learning and preference learning.

Table 4: Online A/B testing experiment results.

Metrics JDAPP JXAPP JSAPP

UV-value +0.93% +3.26% +2.71%

P-value 1.25e-2 7.30e-2 2.12e-1

UCVR +0.3384% +1.45% +1.40%

P-value 2.56e-2 2.19e-2 5.04e-3

5 CONCLUSION
In this paper, we study an important e-commerce search problem,

that is, the general mismatch between the semantic relevance and

user preference. To tackle this problem, we redesign a novel and rea-

sonable evaluation metric by theoretical analysis, in order to ensure

the balance between the relevance learning and preference learn-

ing. The Mixture-gate Mixture of Experts (MMoE) framework is

suitable to such a metric, but still preserves its inherent limitations:

cannot deal with heterogeneous tasks and weak interpretability. So

we reform MMoE into heterogeneous MMoE (HMMoE). In a spe-

cific application scene, HMMoE can assign the stationary experts

to participate in the following calculation according to explicit or

semi-explicit gating networks. Finally, we verify HMMoE’s effec-

tiveness compared to base MMoE and other text match models in

the offline experiments, and then show HMMoE’s positive benefits

in the online e-commerce system.
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