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ABSTRACT
Off-policy evaluation (OPE) aims to estimate the performance of

hypothetical policies using data generated by a different policy.

Because of its huge potential impact, there has been growing re-

search interest in OPE. There is, however, no real-world public

dataset that enables the evaluation of OPE, making its experimental

studies unrealistic and irreproducible. With the goal of enabling

realistic and reproducible OPE research, we publicize the Open
Bandit Dataset collected on a large-scale fashion e-commerce plat-

form, ZOZOTOWN. Our dataset is unique in that it contains a set

of multiple logged bandit feedback datasets collected by running

different policies on the same platform. This enables realistic and

reproducible experimental comparisons of different OPE estimators

for the first time. We also develop Python software called the Open
Bandit Pipeline to streamline and standardize the implementations

of bandit algorithms and OPE. Our open data and pipeline will

contribute to the fair and transparent OPE research and help the

community identify fruitful research directions. Finally, we pro-

vide extensive benchmark experiments of existing OPE estimators

using our data and pipeline. Our experiments open up essential

challenges and new avenues for future OPE research. Our pipeline

and example data are available at https://github.com/st-tech/zr-
obp. The extended version including detailed experimental results

is available at https://arxiv.org/abs/2008.07146.
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1 INTRODUCTION
Interactive bandit and reinforcement learning systems (e.g., person-

alized medicine, ad/recommendation/search platforms) produce log
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data valuable for evaluating and redesigning the system. For exam-

ple, the logs of a news recommendation system record which news

article was presented and whether the user read it, giving the sys-

tem designer a chance to make its recommendations more relevant.

Exploiting log bandit data is, however, more difficult than conven-

tional supervised machine learning: the result is only observed for

the action chosen by the system, but not for all the other actions that

the system could have taken. The logs are also biased in that they

overrepresent the actions favored by the system. A potential solu-

tion to this problem is an A/B test that compares the performance

of counterfactual systems in an online environment. However, A/B

testing counterfactual systems is often difficult because deploying

a new policy is time- and money-consuming and entails risks of

failure. This leads us to the problem of off-policy evaluation (OPE),

which aims to estimate the performance of a counterfactual (or

evaluation) policy using only log data collected by a past (or behav-

ior) policy. OPE allows us to compare the performance of candidate

counterfactual policies without implementing A/B tests and con-

tributes to safe policy improvements. Its applications range from

contextual bandits [2, 17, 18, 24, 28, 30–32, 37, 40] and reinforce-

ment learning in the web industry [7, 13–15, 20, 33–35, 41] to other

social domains such as healthcare [23] and education [21].

Issues with current experimental procedures. Although the

research community has produced theoretical breakthroughs, the

experimental evaluation of OPE remains primitive. Specifically, it

lacks a public benchmark dataset for comparing the performance of

different methods. Researchers often validate their methods using

synthetic simulation environments [15, 20, 37, 39, 41]. A version of

the synthetic approach is tomodifymulticlass classification datasets

and treat supervised machine learning methods as bandit policies

to evaluate the estimation accuracy of OPE estimators [5, 7, 38, 40].

An obvious problem with these studies is that they are unrealistic
because there is no guarantee that their simulation environment

is similar to real-world settings. To solve this issue, Gilotte et al.

[8], Gruson et al. [10], Narita et al. [24, 25] use proprietary real-

world datasets. Because these datasets are not public, however, the

results are irreproducible, and it remains challenging to compare

their methods with new ideas in a fair manner. This is in contrast to

other domains of machine learning, where large-scale open datasets,

such as the ImageNet dataset [4], have been pivotal in driving

objective progress [6, 9, 11, 12].

Contributions. Our goal is to implement and evaluate OPE in

realistic and reproducibleways. To this end, we release the Open

https://doi.org/10.1145/1122445.1122456
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Bandit Dataset, a set of logged bandit feedback datasets collected on
a fashion e-commerce platform, ZOZOTOWN.

1
ZOZOTOWN is the

largest fashion e-commerce platform in Japan, with an annual gross

merchandise value of over 3 billion US dollars. When the platform

produced the data, it used Bernoulli Thompson Sampling (Bernoulli

TS) [36] and uniform random (Random) policies to recommend

fashion items to users. The dataset includes a set of multiple logged
bandit feedback datasets collected during an A/B test of these bandit

policies. Having multiple log datasets is essential because it enables

data-driven evaluation of the estimation accuracy of OPE methods.

In addition to the dataset, we also implement the Open Bandit
Pipeline, an open-source Python software including a series of mod-

ules for implementing dataset preprocessing, policy learning meth-

ods, and OPE estimators. Our software provides a complete, stan-

dardized experimental procedure for OPE research, ensuring that

performance comparisons are fair, transparent, and reproducible.

It also enables fast and accurate OPE implementation through a

single unified interface, simplifying the practical use of OPE.

Using our dataset and pipeline, we perform an extensive bench-

mark experiment on existing estimators. Specifically, we implement

this by using the log data of one of the policies (e.g., Bernoulli TS)

to estimate the policy value of the other policy (e.g., Random) with

each OPE estimator. We then assess the accuracy of the estimator

by comparing its estimation with the policy value obtained from

the data in an on-policy manner. This type of data-driven evaluation

of OPE is possible with our dataset, because it contains multiple dif-

ferent logged bandit feedback datasets. With our unique real-world

dataset, our benchmark experiment is the first empirical study com-

paring a variety of OPE estimators in a realistic and reproducible

manner.

In the benchmark experiment, we obtain the following observa-

tions:

• The estimation performances of all OPE estimators drop

significantly when they are applied to estimate the future

(or out-sample) performance of a new policy.

• The estimation performances of OPE estimators heavily de-

pend on experimental settings and hyperparameters.

These empirical findings lead to the following future research di-

rections: (i) improving out-of-distribution estimation performance

and (ii) developing methods to identify appropriate OPE estimators

for various settings.

We summarize our key contributions as follows:

• (Dataset Release) We build and release the Open Bandit
Dataset, a set of multiple logged bandit feedback datasets to

assist realistic and reproducible research about OPE.

• (Pipeline Implementation) We implement the Open Ban-
dit Pipeline, an open-source Python software that helps prac-

titioners implement OPE to evaluate their bandit systems

and researchers compare different OPE estimators in a stan-

dardized manner.

• (BenchmarkExperiment)We perform comprehensive bench-

mark experiments on existing OPE methods and indicate

critical challenges in future research.

1
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2 OFF-POLICY EVALUATION
2.1 Setup
We consider a general contextual bandit setting. Let 𝑟 ∈ [0, 𝑟max]
denote a reward variable (e.g., whether a fashion item as an action

results in a click). We let 𝑥 ∈ X be a context vector (e.g., the

user’s demographic profile) that the decision maker observes when

picking an action. Rewards and contexts are sampled from unknown

probability distributions 𝑝 (𝑟 | 𝑥, 𝑎) and 𝑝 (𝑥), respectively. Let A
be a finite set of actions. We call a function 𝜋 : X → Δ(A) a policy.
It maps each context 𝑥 ∈ X into a distribution over actions, where

𝜋 (𝑎 | 𝑥) is the probability of taking action 𝑎 given context 𝑥 .

Our setup allows for many popular multi-armed bandit algo-

rithms and off-policy learning methods, as the following examples

illustrate.

Example 1 (RandomA/B testing). We always choose each action
uniformly at random, i.e., 𝜋

Uniform
(𝑎 | 𝑥) = |A|−1 always holds for

any given 𝑎 ∈ A and 𝑥 ∈ X.

Example 2 (Bernoulli Thompson Sampling). We sample the
potential reward 𝑟 (𝑎) from the beta distribution 𝐵𝑒𝑡𝑎(𝑆𝑡𝑎 +𝛼, 𝐹𝑡𝑎 +𝛽)
for each action inA, where 𝑆𝑡𝑎 :=

∑𝑡−1
𝑡 ′=1 𝑟𝑡 ′, 𝐹𝑡𝑎 := (𝑡−1)−𝑆𝑡𝑎 . (𝛼, 𝛽)

are the parameters of the prior Beta distribution. We then choose the
action with the highest sampled potential reward, 𝑎 :∈ argmax

𝑎′∈A
𝑟 (𝑎′)

(ties are broken arbitrarily). As a result, this algorithm chooses actions
with the following probabilities:

𝜋
BernoulliTS

(𝑎 | 𝑥) = Pr{𝑎 ∈ argmax

𝑎′∈A
𝑟 (𝑎′)}

for any given 𝑎 ∈ A and 𝑥 ∈ X. When implementing the data
collection experiment on the ZOZOTOWN platform, we modified TS
to adjust to our top-3 recommendation setting shown in Figure 1.
The modified TS selects three actions with the three highest sampled
rewards which create a non-repetitive set of item recommendations
for each comming user.

Example 3 (IPW Learner). When D is given, we can train a
deterministic policy 𝜋

det
: X → A by maximizing the IPW estimator

as follows:

𝜋
det

(𝑥) ∈ argmax

𝜋 ∈Π
𝑉IPW (𝜋 ;D)

= argmax

𝜋 ∈Π
ED

[
I {𝜋 (𝑥𝑡 ) = 𝑎𝑡 }
𝜋𝑏 (𝑎𝑡 | 𝑥𝑡 )

𝑟𝑡

]
= argmin

𝜋 ∈Π
ED

[
𝑟𝑡

𝜋𝑏 (𝑎𝑡 | 𝑥𝑡 )
I {𝜋 (𝑥𝑡 ) ≠ 𝑎𝑡 }

]
, which is equivalent to the cost-sensitive classification problem that
can be solved with an arbitrary machine learning classifier.

LetD := {(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 )}𝑇𝑡=1 be the historical logged bandit feedback
with 𝑇 rounds of observations. 𝑎𝑡 is a discrete variable indicating

which action inA is chosen in round 𝑡 . 𝑟𝑡 and 𝑥𝑡 denote the reward

and the context observed in round 𝑡 , respectively. We assume that

a logged bandit feedback is generated by a behavior policy 𝜋𝑏 as



follows:

{(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 )}𝑇𝑡=1 ∼
𝑇∏
𝑡=1

𝑝 (𝑥𝑡 )𝜋𝑏 (𝑎𝑡 | 𝑥𝑡 )𝑝 (𝑟𝑡 | 𝑥𝑡 , 𝑎𝑡 ),

where each context–action–reward triplet is sampled independently

from the product distribution.

For a function 𝑓 (𝑥, 𝑎, 𝑟 ), let

ED [𝑓 ] := |D|−1
∑

(𝑥𝑡 ,𝑎𝑡 ,𝑟𝑡 ) ∈D
𝑓 (𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 )

denote its empirical expectation overD. Then, for a function𝑔(𝑥, 𝑎),
we let 𝑔(𝑥, 𝜋) := E𝑎∼𝜋 (𝑎 |𝑥) [𝑔(𝑥, 𝑎) | 𝑥]. We also use 𝑞(𝑥, 𝑎) :=

E𝑟∼𝑝 (𝑟 |𝑥,𝑎) [𝑟 | 𝑥, 𝑎] to denote the mean reward function.

2.2 Estimation Target
We are interested in using historical logged bandit data to estimate

the following policy value of any given evaluation policy 𝜋𝑒 , which

might be different from 𝜋𝑏 :

𝑉 (𝜋𝑒 ) := E(𝑥,𝑎,𝑟 )∼𝑝 (𝑥)𝜋𝑒 (𝑎 |𝑥)𝑝 (𝑟 |𝑥,𝑎) [𝑟 ] .

Estimating 𝑉 (𝜋𝑒 ) before implementing 𝜋𝑒 in an online environ-

ment is valuable because 𝜋𝑒 may perform poorly and damage user

satisfaction. Additionally, it is possible to select a promising policy

by comparing the performance of candidate policies estimated by

OPE without A/B tests.

2.3 Existing Estimators
Here, we summarize several existing OPE methods.

Direct Method (DM).. DM [1] first estimates the mean reward

function using a supervised machine learning model, such as ran-

dom forest or ridge regression. It then plugs it in to estimate the

policy value as

𝑉DM (𝜋𝑒 ;D, 𝑞) := ED [𝑞(𝑥𝑡 , 𝜋𝑒 )],

where 𝑞(𝑥, 𝑎) is a reward estimator. If 𝑞(𝑥, 𝑎) is a good approxima-

tion of the mean reward function, DM estimates the policy value

accurately. If 𝑞(𝑥, 𝑎) fails to approximate the mean reward function

well, however, the final estimator is no longer consistent.

Inverse Probability Weighting (IPW).. To alleviate the issue with

DM, researchers often use IPW [26, 28]. IPW re-weights the ob-

served rewards by the importance weight as

𝑉IPW (𝜋𝑒 ;D) := ED [𝑤 (𝑥𝑡 , 𝑎𝑡 )𝑟𝑡 ],

where𝑤 (𝑥, 𝑎) := 𝜋𝑒 (𝑎 | 𝑥)/𝜋𝑏 (𝑎 | 𝑥). When the behavior policy is

known, IPW is unbiased and consistent for the policy value. How-

ever, it can have a large variance, especially when the evaluation

policy deviates significantly from the behavior policy.

Doubly Robust (DR).. DR [5] combines DM and IPW as

𝑉DR (𝜋𝑒 ;D, 𝑞) := ED [𝑞(𝑥𝑡 , 𝜋𝑒 ) +𝑤 (𝑥𝑡 , 𝑎𝑡 ) (𝑟𝑡 − 𝑞(𝑥𝑡 , 𝑎𝑡 ))] .

DR mimics IPW to use a weighted version of rewards, but it also

uses 𝑞 as a control variate to decrease the variance. It preserves the

consistency of IPW if either the importance weight or the reward

estimator is consistent (a property called double robustness).

Self-Normalized Estimators. Self-Normalized Inverse Probability

Weighting (SNIPW) is an approach to address the variance issue

with the original IPW. It estimates the policy value by dividing the

sum of weighted rewards by the sum of importance weights as:

𝑉SNIPW (𝜋𝑒 ;D) := ED [𝑤 (𝑥𝑡 , 𝑎𝑡 )𝑟𝑡 ]
ED [𝑤 (𝑥𝑡 , 𝑎𝑡 )]

.

SNIPW is more stable than IPW, because policy value estimated by

SNIPW is bounded in the support of rewards and its conditional

variance given action and context is bounded by the conditional

variance of the rewards [15]. IPW does not have these properties.

We can define Self-Normalized Doubly Robust (SNDR) in a similar

manner as follows.

𝑉SNDR (𝜋𝑒 ;D) := ED
[
𝑞(𝑥𝑡 , 𝜋𝑒 ) +

𝑤 (𝑥𝑡 , 𝑎𝑡 ) (𝑟𝑡 − 𝑞(𝑥𝑡 , 𝑎𝑡 ))
ED [𝑤 (𝑥𝑡 , 𝑎𝑡 )]

]
.

Switch Estimators. The DR estimator can still be subject to the

variance issue, particularly when the importance weights are large

due to weak overlap. Switch-DR aims to reduce the effect of the

variance issue by using DM where importance weights are large as:

𝑉
SwitchDR

(𝜋𝑒 ;D, 𝑞, 𝜏)
:= ED [𝑞(𝑥𝑡 , 𝜋𝑒 ) +𝑤 (𝑥𝑡 , 𝑎𝑡 ) (𝑟𝑡 − 𝑞(𝑥𝑡 , 𝑎𝑡 ))I{𝑤 (𝑥𝑡 , 𝑎𝑡 ) ≤ 𝜏}] ,

where I{·} is the indicator function and 𝜏 ≥ 0 is a hyperparame-

ter. Switch-DR interpolates between DM and DR. When 𝜏 = 0, it

coincides with DM, while 𝜏 → ∞ yields DR.

More Robust Doubly Robust (MRDR).. MRDR uses a specialized

reward estimator (𝑞MRDR) that minimizes the variance of the result-

ing policy value estimator [7]. This estimator estimates the policy

value as:

𝑉MRDR (𝜋𝑒 ;D, 𝑞MRDR) := 𝑉DR (𝜋𝑒 ;D, 𝑞MRDR),

where 𝑞MRDR is derived by minimizing the (empirical) variance

objective:

𝑞MRDR ∈ argmin

𝑞∈Q
VD (𝑉DR (𝜋𝑒 ;D, 𝑞)),

where Q is a function class for the reward estimator. When Q is

well-specified, then 𝑞MRDR = 𝑞. Here, even if Q is misspecified, the

derived reward estimator is expected to behave well since the target

function is the resulting variance.

Doubly Robust with Optimistic Shrinkage (DRos). Su et al. [29]

proposes DRos based on a new weight function𝑤𝑜 : X × A → R+
that directly minimizes sharp bounds on the MSE of the resulting

estimator. DRos is defined as

𝑉DRos (𝜋𝑒 ;D, 𝑞, 𝜆) := ED [𝑞(𝑥𝑡 , 𝜋𝑒 ) +𝑤𝑜 (𝑥𝑡 , 𝑎𝑡 ; 𝜆) (𝑟𝑡 − 𝑞(𝑥𝑡 , 𝑎𝑡 ))],

where 𝜆 ≥ 0 is a pre-defined hyperparameter and the new weight

is

𝑤𝑜 (𝑥, 𝑎; 𝜆) :=
𝜆

𝑤2 (𝑥, 𝑎) + 𝜆
𝑤 (𝑥, 𝑎).

When 𝜆 = 0, 𝑤𝑜 (𝑥, 𝑎; 𝜆) = 0 leading to the standard DM. On the

other hand, as 𝜆 → ∞,𝑤𝑜 (𝑥, 𝑎; 𝜆) = 𝑤 (𝑥, 𝑎) leading to the original

DR.



Table 1: Statistics of the Open Bandit Dataset

Campaigns Data Collection Policies #Data #Items Average Age CTR (𝑉 (𝜋)) ±95% CI Relative-CTR

ALL
Random 1,374,327

80 37.93

0.35% ±0.010 1.00

Bernoulli TS 12,168,084 0.50% ±0.004 1.43

Men’s
Random 452,949

34 37.68

0.51% ±0.021 1.48

Bernoulli TS 4,077,727 0.67% ±0.008 1.94

Women’s
Random 864,585

46 37.99

0.48% ±0.014 1.39

Bernoulli TS 7,765,497 0.64% ±0.056 1.84

Note: Bernoulli TS stands for Bernoulli Thompson Sampling. #Data is the total number of user impressions observed during the 7-day

experiment. #Items is the total number of items having a non-zero probability of being recommended by each policy. Average Age is the
average age of users in each campaign. CTR is the percentage of a click being observed in log data, and this is the performance of the data

collection policies for each campaign. The 95% confidence interval (CI) of CTR is calculated based on a normal approximation of the

Bernoulli sampling. Relative-CTR is the CTR relative to that of the Random policy for the “ALL” campaign.

Figure 1: Fashion items as actions displayed in ZOZOTOWN
recommendation interface. Three fashion items are simul-
taneously presented to a user in each recommendation.

3 OPEN-SOURCE DATASET AND PIPELINE
Motivated by the paucity of real-world datasets and implementa-

tions enabling the data-driven evaluation of OPE, we release the

following open-source dataset and software.

Open Bandit Dataset. Our open-source dataset is a set ofmultiple
logged bandit feedback datasets provided by ZOZO, Inc., the largest

Japanese fashion e-commerce company. The company uses multi-

armed bandit algorithms to recommend fashion items to users in

their large-scale fashion e-commerce platform called ZOZOTOWN.

We present examples of displayed fashion items in Figure 1. We

collected the data in a 7-day experiment in late November 2019 on

three “campaigns,” corresponding to “ALL”, “Men’s”, and “Women’s”

items, respectively. Each campaign randomly uses either the Ran-

dom policy or the Bernoulli TS policy for each user impression.
2

These policies select three of the candidate fashion items for each

user. Let I be a set of items, and let K be a set of positions. Figure 1
shows that |K | = 3 for our data.We assume that the reward (click in-

dicator) depends only on the item and its position, which is a general

2
Note that we pre-trained Bernoulli TS for over a month before the data collection

process, and the policy well converges to a fixed one. Therefore, our dataset fits the

standard OPE formulation, that assumes fixed behavior and evaluation policies.

assumption on the click generative model in the web industry [19].

Under this assumption, we can apply the OPE setup and estimators

in Section 2 to our dataset. We provide some statistics of the dataset

in Table 1. The dataset is large and contains many millions of rec-

ommendation instances. It also includes the probabilities that item

𝑎 is displayed at position 𝑘 by the data collection policies which are

used to calculate the importance weight.
3
We share the full version

of our dataset at https://research.zozo.com/data.html.

Open Bandit Pipeline. To facilitate the use of OPE in practice

and standardize its experimental procedure, we also build a Python

package called the Open Bandit Pipeline.4 Our pipeline contains the
following main modules:

• The datasetmodule provides a data loader for the Open Ban-

dit Dataset and tools to generate synthetic bandit datasets.

It also implements a class to handle multiclass classification

datasets as bandit feedback in OPE experiments.

• The policy module implements several online bandit al-

gorithms and off-policy learning methods such as the one

maximizing the IPW objective with only logged bandit data.

This module also implements interfaces for implementing

new policies so that practitioners can easily evaluate their

own policies using OPE.

• The ope module implements several existing OPE estima-

tors including the basic ones such as DM, IPW, and DR and

some advanced ones such as Switch [40], More Robust Dou-

bly Robust (MRDR) [7], and DR with Optimistic Shrinkage

(DRos) [29]. This module also implements interfaces for im-

plementing new estimators so that researchers can test their

own estimation methods with our pipeline.

We also provide thorough documentation of the pipeline so that any-

one can follow its usage. This pipeline allows researchers to focus

on building their OPE estimator and to easily compare it with other

methods in realistic and reproducible ways. Every core function of

the packages is tested
5
and thus are well maintained. The package

3
We computed the true action choice probabilities by Monte Carlo simulations based

on the policy parameters (e.g., parameters of the beta distribution used by Bernoulli

TS) used during the data collection process.

4
Our pipeline is available at https://github.com/st-tech/zr-obp.

5
https://github.com/st-tech/zr-obp/tree/master/tests



currently has five core contributors
6
. The active development and

maintenance will continue in a long period.

To our knowledge, our open-source dataset is the first to include

logged bandit datasets collected by running multiple different poli-
cies and the exact policy implementations used in real production,

enabling “realistic and reproducible evaluation of OPE” for the
first time.

4 RELATED RESOURCES
In this section, we summarize existing related resources and clarify

the differences between ours and previous ones.

4.1 Related Datasets
Our dataset is closely related to those of Lefortier et al. [16] and

Li et al. [17]. Lefortier et al. [16] introduces a large-scale logged

bandit feedback data (Criteo data) from a leading company in dis-

play advertising, Criteo. The data contain context vectors of user

impressions, advertisements (ads) as actions, and click indicators

as rewards. It also provides the ex-ante probability of each ad be-

ing selected by the behavior policy. Therefore, this dataset can be

used to compare different off-policy learning methods, which aim

to learn a new policy using only historical logged bandit data. In

contrast, Li et al. [17] introduces a dataset (Yahoo! data) collected

on a news recommendation interface of the Yahoo! Today Module.

The data contain context vectors of user impressions, presented

news as actions, and click indicators as rewards. The data were

collected by running a uniform random policy on the news recom-

mendation platform, allowing researchers to evaluate their own

bandit algorithms.

However, the Criteo and Yahoo! datasets have several limitations,

which we overcome as follows:

• They include only a single logged bandit feedback dataset

collected by running a single policy. Moreover, the previ-

ous datasets do not provide the implementation to replicate

the policies used during data collection. As a result, these

datasets cannot be used for the evaluation and comparison

of different OPE estimators, although they can be used to

evaluate off-policy learning methods.

→ In contrast, we provide the code to replicate the data

collection policies (i.e., Bernoulli TS and Random) in our

pipeline, which allows researchers to rerun the same poli-

cies on the log data. Moreover, our open dataset consists of

a set of multiple different logged bandit feedback datasets

generated by running two different policies on the same plat-

form. It enables the evaluation and comparison of different

OPE estimators, as we show in Section 5. This is the first

large-scale bandit dataset, enabling realistic and data-driven

evaluation of OPE.

• The previous datasets do not provide a pipeline implemen-

tation for handling their data. Researchers have to reimple-

ment the experimental environment by themselves before

implementing their own OPE methods. This may lead to in-

consistent experimental conditions across different studies,

potentially causing reproducibility issues.

6
https://github.com/st-tech/zr-obp/graphs/contributors

→We implement the Open Bandit Pipeline to simplify and

standardize the experimental processing of bandit algorithms

and OPE. This tool thus contributes to the reproducible and

transparent use of our dataset.

Table 2 summarizes key differences between our dataset and

existing ones.

4.2 Related Packages
There are several existing Python packages related to the Open

Bandit Pipeline. For example, the contextualbandits package7 con-
tains implementations of several contextual bandit algorithms [3]. It

aims to provide an easy procedure to compare bandit algorithms to

reproduce research papers that do not provide easily available imple-

mentations. In addition, RecoGym8
focuses on providing simulation

bandit environments imitating the e-commerce recommendation

setting [27]. This package also implements an online bandit algo-

rithm based on epsilon greedy and an off-policy learning method

based on IPW.

However, the following features differentiate our pipeline from

the previous ones:

• The previous packages focus on implementing and compar-

ing online bandit algorithms or off-policy learning meth-

ods. However, they cannot be used to implement several

advanced OPE estimators and the evaluation of OPE proce-

dure.

→ Our package implements a wide variety of OPE estima-

tors, including advanced ones such as Switch, MRDR, and

DRos. Our package also provides flexible interfaces for im-

plementing new OPE estimators. Consequently, researchers

can easily compare their own estimators with other methods

in a fair, standardized manner using our package.

• The previous packages cannot handle real-world bandit datasets.

→ Our package comes with the Open Bandit Dataset and

includes the dataset module. This enables the evaluation
of bandit algorithms and OPE estimators using real-world

data. This function of our package contributes to realistic

experiments on these topics.

Table 3 summarizes key differences between our pipeline and

existing ones.

5 BENCHMARK EXPERIMENTS
We perform benchmark experiments of OPE estimators using the

Open Bandit Dataset and Pipeline. We first describe an experimen-

tal protocol to evaluate OPE estimators and use it to compare a

wide variety of existing estimators. We then discuss our initial

findings in the experiments and indicate future research direc-

tions. We share the code for running the benchmark experiments at

https://github.com/st-tech/zr-obp/tree/master/benchmark.

5.1 Experimental Protocol
We can empirically evaluate OPE estimators’ performances by using

two sources of logged bandit feedback collected by running two

different policies. In the protocol, we regard one policy as behavior

7
https://github.com/david-cortes/contextualbandits

8
https://github.com/criteo-research/reco-gym



Table 2: Comparison of currently available large-scale bandit datasets

Criteo Data [16] Yahoo! Data [17] Open Bandit Dataset (ours)

Domain Display Advertising News Recommendation Fashion E-Commerce

Dataset Size >103M >40M >26M (will increase)

#Data Collection Policies 1 1 2 (will increase)
Uniform Random Data % " "

Data Collection Policy Code % % "

Evaluation of Bandit Algorithms " " "

Evaluation of OPE % % "

Pipeline Implementation % % "

Note: Dataset Size is the total number of samples included in the whole dataset. #Data Collection Policies is the number of policies that

were used to collect the data. Uniform Random Data indicates whether the dataset contains a subset of data generated by the uniform

random policy. Data Collection Policy Code indicates whether the code to replicate data collection policies is publicized. Evaluation of
Bandit Algorithms indicates whether it is possible to use the data to evaluate bandit algorithms. Evaluation of OPE indicates whether it

is possible to use the dataset to evaluate OPE estimators. Pipeline Implementation indicates whether a pipeline tool to handle the dataset

is available.

Table 3: Comparison of currently available packages of bandit algorithms and OPE

contextualbandits [3] RecoGym [27] Open Bandit Pipeline (ours)

Synthetic Data Generator % " "

Classification Data Handler % % "

Support for Real-World Data % % "

Bandit Algorithms " " "

Basic OPE Estimators " % "

Advanced OPE Estimators % % "

Evaluation of OPE % % "

Note: Synthetic Data Generator indicates whether it is possible to create synthetic bandit data with the package. Classification Data
Handler indicates whether it is possible to handle multiclass classification datas as bandit feedback with the package. Support for
Real-World Data indicates whether it is possible to handle real-world bandit data with the package. Bandit Algorithms indicates
whether the package includes implementations of online and offline bandit algorithms. Basic OPE Estimators indicates whether the
package includes implementations of basic OPE estimators such as DM, IPW, and DR described in Section 2.3. Advanced OPE Estimators
indicates whether the package includes implementations of advanced OPE estimators such as Switch and More Robust Doubly Robust.

Evaluation of OPE indicates whether it is possible to evaluate the accuracy of OPE estimators with the package.

policy 𝜋𝑏 and the other one as evaluation policy 𝜋𝑒 . We denote

log data generated by 𝜋𝑏 and 𝜋𝑒 as D (𝑏)
:= {(𝑥 (𝑏)𝑡 , 𝑎

(𝑏)
𝑡 , 𝑟

(𝑏)
𝑡 )}𝑇 (𝑏)

𝑡=1

andD (𝑒)
:= {(𝑥 (𝑒)𝑡 , 𝑎

(𝑒)
𝑡 , 𝑟

(𝑒)
𝑡 )}𝑇 (𝑒 )

𝑡=1
, respectively. Then, by applying

the following protocol to several different OPE estimators, we can

compare their estimation performances:

(1) Define the evaluation and test sets as

• (in-sample) Dev := D (𝑏)
1:𝑇 (𝑏) , Dte := D (𝑒)

1:𝑇 (𝑒 )

• (out-sample) Dev := D (𝑏)
1:𝑡

, Dte := D (𝑒)
𝑡+1:𝑇 (𝑒 )

where D𝑎:𝑏 := {(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 )}𝑏𝑡=𝑎 .
(2) Estimate the policy value of 𝜋𝑒 using Dev by 𝑉 . We can

represent a policy value estimated by 𝑉 as 𝑉 (𝜋𝑒 ;Dev).

(3) Estimate 𝑉 (𝜋𝑒 ) by the on-policy estimation and regard it as

the policy value of 𝜋𝑒 , i.e.,
9

𝑉on (𝜋𝑒 ) := EDte
[𝑟 (𝑒)𝑡 ] .

(4) Compare the off-policy estimate𝑉 (𝜋𝑒 ;Dev) with its ground-

truth 𝑉on (𝜋𝑒 ). We can evaluate the estimation accuracy of

𝑉 using the following relative estimation error (relative-EE):

relative-EE(𝑉 ;Dev) :=
����𝑉 (𝜋𝑒 ;Dev) −𝑉on (𝜋𝑒 )

𝑉on (𝜋𝑒 )

���� .
(5) To estimate the standard deviation of relative-EE, repeat the

above process several times with different bootstrap samples

of the logged bandit data.

We call the problem settingwithout the sample splitting by time

series as the in-sample case. In contrast, we call the settingwith the

9
Note that Table 1 presents𝑉on (𝜋𝑒 ) for each pair of behavior policies and campaigns,

and the small confidence intervals ensure that the on-policy estimation is accurate.



Table 4: Comparison of relative-estimation errors of OPE estimators (ALL Campaign)

Random→ Bernoulli TS Bernoulli TS→ Random

OPE Estimators in-sample out-sample in-sample out-sample

DM 0.23433 ±0.02131 0.25730 ±0.02191 0.34522 ±0.01020 0.29422 ±0.01199
IPW 0.05146 ±0.03418 0.09169 ±0.04086 0.02341 ±0.02146 0.08255 ±0.03798

SNIPW 0.05141 ±0.03374 0.08899 ±0.04106 0.05233 ±0.02614 0.13374 ±0.04416
DR 0.05269 ±0.03460 0.09064 ±0.04105 0.06446 ±0.03001 0.14907 ±0.05097

SNDR 0.05269 ±0.03398 0.09013 ±0.04122 0.04938 ±0.02645 0.12306 ±0.04481
Switch-DR (𝜏 = 5) 0.15350 ±0.02274 0.16918 ±0.02231 0.26811 ±0.00780 0.21945 ±0.00944
Switch-DR (𝜏 = 10) 0.09932 ±0.02459 0.12051 ±0.02203 0.21596 ±0.00907 0.16532 ±0.01127
Switch-DR (𝜏 = 50) 0.05269 ±0.03460 0.09064 ±0.04105 0.09769 ±0.01515 0.04019 ±0.01349
Switch-DR (𝜏 = 100) 0.05269 ±0.03460 0.09064 ±0.04105 0.05938 ±0.01597 0.01310 ±0.00988
Switch-DR (𝜏 = 500) 0.05269 ±0.03460 0.09064 ±0.04105 0.02123 ±0.01386 0.06564 ±0.02132
Switch-DR (𝜏 = 1000) 0.05269 ±0.03460 0.09064 ±0.04105 0.02840 ±0.01929 0.05347 ±0.03330

DRos (𝜆 = 5) 0.19135 ±0.01964 0.21240 ±0.01938 0.30395 ±0.00726 0.25216 ±0.00929
DRos (𝜆 = 10) 0.17400 ±0.01993 0.19500 ±0.01885 0.28735 ±0.00706 0.23627 ±0.00899
DRos (𝜆 = 50) 0.12867 ±0.02124 0.15155 ±0.01911 0.23876 ±0.00707 0.18855 ±0.00907
DRos (𝜆 = 100) 0.11055 ±0.02241 0.13561 ±0.02080 0.21550 ±0.00744 0.16474 ±0.00942
DRos (𝜆 = 500) 0.07715 ±0.02736 0.10915 ±0.02944 0.16055 ±0.00942 0.10601 ±0.01048
DRos (𝜆 = 1000) 0.06739 ±0.02988 0.10187 ±0.03358 0.13717 ±0.01064 0.08034 ±0.01093

MRDR 0.05458 ±0.03386 0.09232 ±0.04169 0.02511 ±0.01735 0.08768 ±0.03821

Note: The averaged relative-estimation errors and their unbiased standard deviations estimated over 30 different bootstrapped iterations are

reported. We describe the method to estimate the standard deviations in Appendix A. 𝜋𝑏 → 𝜋𝑒 represents the OPE situation where the

estimators aim to estimate the policy value of 𝜋𝑒 using logged bandit data collected by 𝜋𝑏 . The red and green fonts represent the best and

second-best estimators, respectively. The blue fonts represent the worst estimator for each setting.

sample splitting as the out-sample case, where OPE estimators aim

to estimate the policy value of an evaluation policy in the future

data. The standard OPE assumes the in-sample case where there are

no distributional change in the environment over time. However,

in practice, we aim to estimate the performance of an evaluation

policy in the future, which may introduce the distributional change

between the data used to conduct OPE and the environment that

defines the policy value of the evaluation policy. We thus test the

performance of OPE estimators in the out-sample case in addition

to the in-sample case.

5.2 Estimators Compared
We use our protocol and compare the following OPE estimators:

DM, IPW, Self-Normalized Inverse Probability Weighting (SNIPW),

DR, Self-Normalized Doubly Robust (SNDR), Switch Doubly Robust

(Switch-DR), DRos, and MRDR. These above estimators are defined

in Section 2.3. We test different hyperparameter values for Switch-

DR and DRos. These above estimators have not yet been compared

in a large, realistic setting.

For estimators except for DM, we use the true action choice

probability 𝜋𝑏 (𝑎 |𝑥) contained in the Open Bandit Dataset. For es-

timators except for IPW and SNIPW, we need to obtain a reward

estimator 𝑞. We do this by using logistic regression (implemented

in scikit-learn) and training it using 30% of Dev. We then use the

rest of the data to estimate the policy value of an evaluation policy.

5.3 Results and Discussion
The results of the benchmark experiments on the “ALL" campaign

are given in Table 4. (We report experimental results on the other

campaigns in Appendix A.) We describe Random → Bernoulli
TS to represent the OPE situation where we use Bernoulli TS as 𝜋𝑒
and Random as 𝜋𝑏 . Similarly, we use Bernoulli TS→ Random to

represent the situation where we use Random as 𝜋𝑒 and Bernoulli

TS as 𝜋𝑏 .

Performance comparisons. First, DM fails to estimate the pol-

icy values in all settings due to the bias of the reward estimator.

We observe that the reward estimator does not improve upon a

naive estimation using the mean CTR for every estimation in the

binary cross-entropy measure. (We present the performance of the

reward estimator in Appendix A.) The problem with DM leads us to

expect that the other estimators may perform better because they

do not rely on the correct specification of the reward estimator. We

confirm this expectation in Table 4, where one can see that the oth-

ers drastically outperform DM. Among the other estimators, IPW,

SNIPW, and MRDR exhibit stable estimation performances across

different settings, and thus we can use these estimators safely. In

Bernoulli TS → Random, Switch-DR performs the best with a



proper hyperparameter configuration. Its performance, however,

largely depends on the choice of hyperparameters, as we discuss

later in detail. Note here that the performances of Switch-DR with

some large hyperparameters are the same as that of DR. This is

a natural observation, as their definitions are the same when the

importance weights of all samples are lower than a given hyper-

parameter. In summary, we observe that simple estimators such

as IPW and SNIPW perform better in many cases than Switch-DR

and DRos even though these advanced methods performed well

on synthetic experiments in previous studies. This suggests that

evaluating the performance of OPE methods with only synthetic or

classification datasets may produce impractical conclusions about

the estimators’ empirical properties. In contrast, our dataset en-

ables researchers to produce more practical conclusions about OPE

methods.

Out-sample generalization of OPE.. Next, we compare the

estimation accuracy of each estimator between the in-sample and

out-sample situations. Table 4 shows that estimators’ performances

drop significantly in almost all situations when they attempt to

generalize their OPE results to the out-sample or future data. The

result suggests that the current OPE methods may fail to evaluate

the performance of a new policy in the future environment, as they

implicitly assume that the data generating distribution does not

change over time. Moreover, this kind of realistic out-of-distribution

generalization check of OPE cannot be conducted with synthetic

or multi-class classification datasets. We thus expect that the Open

Bandit Dataset promotes the future research about the robustness

of OPE methods to distributional changes.

Table 5: Comparison of OPE performance with differ-
ent reward estimators (ALL Campaign/Bernoulli TS →
Random/in-sample)

OPE Estimators LR RF

DM 0.34522 0.30391

DR 0.06446 0.05775

SNDR 0.04938 0.04658

Switch-DR (𝜏 = 100) 0.05938 0.05499

DRos (𝜆 = 100) 0.21550 0.19111

MRDR 0.02511 0.03000

Note: The averaged relative-estimation errors over 30 different

bootstrapped iterations are reported. LR stands for logistic

regression and RF stands for random forest. The results on the

other campaigns are in Appendix A.

Performance changes across different settings. Finally, we
compare the estimation accuracy of each estimator under different

experimental conditions and with different hyperparameters. We

observe in Table 4 that the estimators’ performance can change sig-

nificantly depending on the experimental conditions. In particular,

we tested several values for the hyperparameter 𝜏 of Switch-DR.

We observe that its estimation performance largely depends on the

choice of 𝜏 . It is obvious that Switch-DR is significantly better with

large values of 𝜏 on our data. We also investigate the effect of the

choice of the machine learning method to construct 𝑞 in Table 5.

Specifically, we additionally test the estimators’ performance when

random forest is used. The table shows that using random forest to

construct 𝑞 provides a more accurate OPE on our dataset. These ob-

servations suggest that practitioners have to choose an appropriate

OPE estimator or tune estimators’ hyperparameters carefully for

their specific application. It is thus necessary to develop a reliable

method to choose and tune OPE estimators in a data-driven manner.

Specifically, in many cases, we have to tune estimators’ hyperpa-

rameters, including the reward estimator, without the ground-truth

policy value of the evaluation policy.

6 CONCLUSION AND FUTUREWORK
To enable realistic and reproducible evaluation of off-policy eval-

uation, we publicized the Open Bandit Dataset–a set of bench-

mark logged bandit datasets collected on a large-scale fashion

e-commerce platform. The dataset comes with the Open Bandit

Pipeline, Python software that makes it easy to evaluate and com-

pare different OPE estimators. We expect them to facilitate under-

standing of the empirical properties of OPE techniques and ad-

dress experimental inconsistencies in the literature. In addition to

building the data and pipeline, we performed extensive benchmark

experiments on OPE. Our experiments highlight that the current

OPE methods are inaccurate for estimating the out-of-distribution

performance of a new policy. It is also evident that it is necessary

to develop a data-driven method to select an appropriate estimator

for each given environment.

As future work, we aim to constantly improve the Open Ban-

dit Dataset and Pipeline to include more data and functions. For

example, we will add additional log data generated by contextual

policies on the platform (whereas the current open data contain

only log data generated by context-free policies). Moreover, we

assume that the reward of an item at a position does not depend

on other simultaneously presented items. This assumption might

not hold, as an item’s attractiveness can have a significant effect on

the expected reward of another item in the same recommendation

list [19]. To address more realistic situations, we are implementing

some OPE estimators for the slate action setting [22, 32] in the

pipeline. Comparing the standard OPE estimators (such as those in

Section 2.3) and those for the slate action setting is an interesting

future research direction.
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Table 6: Estimation performances of reward estimators

Random→ Bernoulli TS Bernoulli TS→ Random

Models Campaigns Metrics in-sample out-sample in-sample out-sample

LR

ALL
AUC 0.56380 ±0.00579 0.53103 ±0.00696 0.57139 ±0.00176 0.51900 ±0.00706
RCE 0.00217 ±0.00133 -0.00853 ±0.00272 0.00588 ±0.00026 -0.01162 ±0.00271

Men’s
AUC 0.58068 ±0.00751 0.54411 ±0.01025 0.57569 ±0.00264 0.56528 ±0.00272
RCE -0.00019 ±0.00316 -0.01767 ±0.00600 0.00588 ±0.00038 0.00329 ±0.00084

Women’s
AUC 0.55245 ±0.00588 0.51900 ±0.00706 0.54642 ±0.00157 0.53387 ±0.00249
RCE -0.00100 ±0.00196 -0.01162 ±0.00271 0.00307 ±0.00018 0.00140 ±0.00031

RF

ALL
AUC 0.65427 ±0.00699 0.58240 ±0.00881 0.59691 ±0.00214 0.57850 ±0.00268
RCE 0.02168 ±0.00146 0.00546 ±0.00162 0.00889 ±0.00019 0.00702 ±0.00025

Men’s
AUC 0.64695 ±0.00794 0.55191 ±0.01247 0.59077 ±0.00193 0.56889 ±0.00184
RCE 0.02122 ±0.00179 -0.00495 ±0.00337 0.00857 ±0.00028 0.00480 ±0.00035

Women’s
AUC 0.62770 ±0.00741 0.53735 ±0.00740 0.56364 ±0.00162 0.54376 ±0.00233
RCE 0.01574 ±0.00121 -0.00264 ±0.00150 0.00401 ±0.00013 0.00224 ±0.00022

Note: This table presents the area under the ROC curve (AUC) and relative

cross-entropy (RCE) of the reward estimator on a validation set for each

campaign. The averaged results and their unbiased standard deviations

estimated using 30 different bootstrapped samples are reported. LR stands

for logistic regression and RF stands for random forest. 𝜋𝑏 → 𝜋𝑒
represents the OPE situation where the estimators aim to estimate the

policy value of 𝜋𝑒 using logged bandit data collected by 𝜋𝑏 , meaning that 𝑞
is trained on data collected by 𝜋𝑏 .

A ADDITIONAL EXPERIMENTAL SETTINGS
AND RESULTS

Table 6 reports the estimation accuracy of logistic regression and

random forest as a reward estimator. Note that, as their hyperparam-

eters, we use 𝐶 = 1000 for logistic regression and n_estimators =

100,max_depth = 5,min_samples_leaf = 10 for random forest. In

addition, we use action-related feature vectors to represent action

variables to train reward estimators. Table 7- 8 show the results

of the benchmark experiments on Men’s and Women’s campaigns.

All the experiments were conducted on MacBook Pro (2.4 GHz

Intel Core i9, 64 GB), and it takes about 1 week to complete the

benchmark on the ALL campaign when we use Bernoulli TS as 𝜋𝑏
and random forest as a reward estimator (, which takes the longest

time among all possible experimental settings).

A.1 Estimation Performance of Reward
Estimators

We evaluate the performance of the reward estimators by using the

following evaluation metrics.

Relative Cross Entropy (RCE).. RCE is defined as the improvement

of an estimation performance relative to the naive estimation, which

uses the mean CTR for every prediction. We calculate this metric

using a size 𝑛 of validation samples {(𝑥𝑡 , 𝑦𝑡 )}𝑛𝑡=1 as:

RCE (𝑞) := 1 −
∑𝑛
𝑡=1 𝑦𝑡 log(𝑞(𝑥𝑡 )) + (1 − 𝑦𝑡 ) log(1 − 𝑞(𝑥𝑡 ))∑𝑛
𝑡=1 𝑦𝑡 log(𝑞naive) + (1 − 𝑦𝑡 ) log(1 − 𝑞naive)

where 𝑞naive := 𝑛−1
∑𝑛
𝑡=1 𝑦𝑡 is the naive estimation. A larger value

of RCE means better performance of a predictor.

Area Under the ROC Curve (AUC).. AUC is defined as the proba-

bility that positive samples are ranked higher than negative items

by a classifier under consideration.

AUC (𝑞) := 1

𝑛pos𝑛neg

𝑛pos∑
𝑡=1

𝑛neg∑
𝑗=1

I{𝑞(𝑥pos𝑡 ) > 𝑞(𝑥neg
𝑗

)}

where I{·} is the indicator function. {𝑥pos𝑡 }𝑛pos

𝑡=1
and {𝑥neg

𝑗
}𝑛neg

𝑗=1
are

sets of positive and negative samples in the validation set, respec-

tively. A larger value of AUC means better performance of a pre-

dictor.

A.2 Estimating Mean and Standard Deviation
of Performance Measures

To estimate means and standard deviations of relative-EE in the

benchmark experiment, we first construct an empirical cumulative

distribution function 𝐹Dev
of the evaluation set of the logged bandit

feedback (Dev). Then, we draw bootstrap samplesD (1,∗)
ev

, . . . ,D (𝐵,∗)
ev

from 𝐹Dev
and compute the relative-EE of a given estimator𝑉 with

each set. Finally, we estimate the mean and its standard deviation

(Std) of the 𝑉 ’s relative-EE by

Mean(relative-EE(𝑉 ;Dev)) :=
1

𝐵

𝐵∑
𝑏=1

relative-EE(𝑉 ;D (𝑏,∗)
ev

),

Std(relative-EE(𝑉 ;Dev))

:=

√√√
1

𝐵 − 1

𝐵∑
𝑏=1

(
relative-EE(𝑉 ;D (𝑏,∗)

ev
) −Mean(relative-EE(𝑉 ;Dev))

)
2

,

where we use 𝐵 = 30 for all experiments.



Table 7: Comparison of relative-estimation errors of OPE estimators (Men’s Campaign)

Random→ Bernoulli TS Bernoulli TS→ Random

OPE Estimators in-sample out-sample in-sample out-sample

DM 0.24311 ±0.03128 0.29088 ±0.03440 0.24332 ±0.01661 0.12275 ±0.01791
IPW 0.11060 ±0.04173 0.19521 ±0.04533 0.02908 ±0.02413 0.08407 ±0.02471

SNIPW 0.09343 ±0.04170 0.17499 ±0.04611 0.07301 ±0.03406 0.19564 ±0.04117
DR 0.09727 ±0.04091 0.18073 ±0.04519 0.14994 ±0.05710 0.28765 ±0.07703

SNDR 0.09447 ±0.04139 0.17794 ±0.04629 0.11218 ±0.04287 0.23546 ±0.05585
Switch-DR (𝜏 = 5) 0.23820 ±0.01950 0.27584 ±0.02035 0.17478 ±0.01145 0.06573 ±0.01204
Switch-DR (𝜏 = 10) 0.16504 ±0.02665 0.20912 ±0.03873 0.17381 ±0.01215 0.05575 ±0.01489
Switch-DR (𝜏 = 50) 0.22290 ±0.04091 0.18073 ±0.04519 0.13706 ±0.02529 0.02666 ±0.01919
Switch-DR (𝜏 = 100) 0.09727 ±0.04091 0.18073 ±0.04519 0.11114 ±0.02864 0.02139 ±0.01596
Switch-DR (𝜏 = 500) 0.09727 ±0.04091 0.18073 ±0.04519 0.05424 ±0.03006 0.05825 ±0.02440
Switch-DR (𝜏 = 1000) 0.09727 ±0.04091 0.18073 ±0.04519 0.05199 ±0.02997 0.06140 ±0.02461

DRos (𝜆 = 5) 0.22303 ±0.02110 0.26581 ±0.02070 0.21428 ±0.01219 0.09445 ±0.01382
DRos (𝜆 = 10) 0.21329 ±0.02029 0.25640 ±0.02045 0.20239 ±0.01157 0.08366 ±0.01301
DRos (𝜆 = 50) 0.17230 ±0.02335 0.22410 ±0.02548 0.17536 ±0.01109 0.05879 ±0.01254
DRos (𝜆 = 100) 0.15069 ±0.02707 0.20992 ±0.02990 0.16542 ±0.01183 0.04906 ±0.01350
DRos (𝜆 = 500) 0.11407 ±0.03594 0.18917 ±0.03980 0.14470 ±0.01597 0.02957 ±0.01567
DRos (𝜆 = 1000) 0.10636 ±0.03816 0.18523 ±0.04222 0.13638 ±0.01835 0.02306 ±0.01598

MRDR 0.09173 ±0.04145 0.17754 ±0.04673 0.04385 ±0.03299 0.07649 ±0.02900

Note: The averaged relative-estimation errors and their unbiased standard deviations estimated over 30 different bootstrapped iterations are

reported. 𝜋𝑏 → 𝜋𝑒 represents the OPE situation where the estimators aim to estimate the policy value of 𝜋𝑒 using logged bandit data

collected by 𝜋𝑏 . The red and green fonts represent the best and the second best estimators. The blue fonts represent the worst estimator for

each setting.

Table 8: Comparison of relative-estimation errors of OPE estimators (Women’s Campaign)

Random→ Bernoulli TS Bernoulli TS→ Random

OPE Estimators in-sample out-sample in-sample out-sample

DM 0.21719 ±0.03274 0.25428 ±0.02940 0.31762 ±0.01011 0.21892 ±0.01346
IPW 0.02827 ±0.02418 0.03957 ±0.02779 0.03992 ±0.01997 0.09295 ±0.02527

SNIPW 0.02827 ±0.02383 0.04221 ±0.02976 0.07564 ±0.02578 0.11461 ±0.02646
DR 0.02835 ±0.02420 0.04200 ±0.02952 0.09244 ±0.03063 0.12652 ±0.02904

SNDR 0.02833 ±0.02415 0.04280 ±0.02973 0.07659 ±0.02582 0.11809 ±0.02661
Switch-DR (𝜏 = 5) 0.15483 ±0.02355 0.20191 ±0.02660 0.24993 ±0.00614 0.16243 ±0.00919
Switch-DR (𝜏 = 10) 0.05966 ±0.03183 0.10547 ±0.03843 0.21151 ±0.00827 0.12292 ±0.00950
Switch-DR (𝜏 = 50) 0.02835 ±0.02420 0.04200 ±0.02952 0.12182 ±0.01416 0.02639 ±0.01515
Switch-DR (𝜏 = 100) 0.02835 ±0.02420 0.04200 ±0.02952 0.08990 ±0.01381 0.01129 ±0.00921
Switch-DR (𝜏 = 500) 0.02835 ±0.02420 0.04200 ±0.02952 0.01838 ±0.01793 0.05898 ±0.02007
Switch-DR (𝜏 = 1000) 0.02835 ±0.02420 0.04200 ±0.02952 0.01644 ±0.01352 0.07120 ±0.02171

DRos (𝜆 = 5) 0.17694 ±0.02694 0.21672 ±0.02729 0.28591 ±0.00635 0.19300 ±0.00982
DRos (𝜆 = 10) 0.15834 ±0.02583 0.19949 ±0.02692 0.27144 ±0.00606 0.17989 ±0.00930
DRos (𝜆 = 50) 0.09811 ±0.02576 0.13920 ±0.02857 0.23040 ±0.00625 0.14109 ±0.00843
DRos (𝜆 = 100) 0.07023 ±0.02786 0.10826 ±0.03132 0.21119 ±0.00679 0.12227 ±0.00852
DRos (𝜆 = 500) 0.03415 ±0.02303 0.05588 ±0.03474 0.16675 ±0.00864 0.07698 ±0.00994
DRos (𝜆 = 1000) 0.02948 ±0.02380 0.04770 ±0.03301 0.14829 ±0.00957 0.05800 ±0.01082

MRDR 0.02809 ±0.02388 0.04354 ±0.03060 0.02800 ±0.01758 0.08990 ±0.01898

Note: The averaged relative-estimation errors and their unbiased standard deviations estimated over 30 different bootstrapped iterations are

reported. 𝜋𝑏 → 𝜋𝑒 represents the OPE situation where the estimators aim to estimate the policy value of 𝜋𝑒 using logged bandit data

collected by 𝜋𝑏 . The red and green fonts represent the best and the second best estimators. The blue fonts represent the worst estimator for

each setting.
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