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ABSTRACT
Identifying similar products is a common pain-point in the world
of E-commerce search and discovery.The key challenges lie in two
aspects: 1) The definition of similarity varies across different ap-
plications, such as near identical products sold by different ven-
dors, products that are substitutable to each other for customers
with common interests, personalized products visually similar in
terms of design pattern, style or color. It is difficult to build a gen-
eral solution for all scenarios. 2) Computing pairwise similarities
among billions of products are resource demanding which makes
it challenging in large-scale data processing. To provide a flexible
and consolidated solution at scale, this paper presents an all-in-one
system, Product Similarity Service (PSS), which leverages the state-
of-the-art Deep Neural Networks and distributed computing tech-
nology to serve diverse Amazon-scale product similarity compu-
tations. The experimental results show that PSS can return highly
relevant similar products in both verification and ranking tasks,
and has good computing efficiency and system scalability on large
data volume.
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1 INTRODUCTION
E-commerce reshapes the new era of customer shopping experi-
ence with more and more customers choosing online shopping.
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Meanwhile, a dramatic rise is observed in the number of prod-
ucts sold on e-commerce websites. Identifying similarity among
a tremendous number of products becomes a critical problem in a
large variety of online business scenarios. For example, Alibaba
built a visual search system to find similar products given cus-
tomer’s image queries [28]; Pinterest applied image search in their
content-based product recommendations [27]. In Amazon, there
is also a trend to apply similarity identification to diverse popular
emerging applications. Fig. 1 shows three applications, where (a)
recommends substitute products for out-of-stock items based on
their images, titles and descriptions with matched key attributes
(e.g. the same phone type), (b) personalizes fashion products which
look similar but vary in some aspects (e.g. different designs), and
(c) searches near identical items sold by different vendors. All
of them need to explore product similarities among Amazon’s
increasingly growing repository but with distinct business goals
and requirements.

As each business application has its own definition of similar-
ity, most of the similarity computing systems in the industry are
tailored with their focus on a certain type of application domain.
It remains challenging to consolidate them into a generic solution
which is flexible enough to serve diverse similarity-based appli-
cations, while at the same time, salable enough to process data
in large volume. Specifically, Amazon applications launched with
similarity features usually need to deal with billions of products
from various categories such as fashion, electronic devices, and
furniture, etc. Building independent computing systems for differ-
ent applications is inefficient from both model development and
resource utilization perspectives. Instead, we present a general
and flexible all-in-one similarity product identification platform,
Product Similarity Service (PSS), to compute the similarity as a
service for a variety of customized similarity use cases at Amazon
scale. The following key challenges are addressed in our system.

Flexible Similarity Definition for Various Applications.
Variant Input Product Information: For different applications, the

system needs to provide the flexibility for input product informa-
tion selection. For example, for visual similarity recommendations,
product image is the key information to use, while for substitute
product identifications, image, title, and description could all be
important clues for similar product identification.

Different Optimization Goals: The system needs to be flexible
enough to optimize the output goals of different applications. For
example, in visual search, the goal is to return products which
have similar visual patterns with the query image in a ranking
order. While in substitute products recommendation, the goal is
to identify products which can be replaceable by each other when
customers make purchase decisions.



Figure 1: Similar product identification applications at Amazon: for a query product, PSS is able to return similar products
with different application definitions.

KeyAttributesMatching:The system needs to have the flexibility
to remove unqualified similar items using post filters. For example,
for substitute phone case recommendations, if a customer is explor-
ing iPhone X case, the post filter should be able to remove phone
cases that are not compatible to iPhone X. Otherwise, it will cause
a very disappointing customer experience.

Scalable and Efficient Similarity Computing.
High scalability and efficiency are needed for a similarity com-

puting system to handle Amazon-scale data. Firstly, the system
needs to be able to scale to process enormous and continuously
growing product sets and publish refreshed similarity results with
controllable time frames. Secondly, the system needs to manage
the computing resource (e.g., CPU/GPU and memory usage) to
optimize for cost as it involves image and text embedding com-
putation from deep neural networks and large item indexing for
similarity search. Thirdly, the system should be capable of iden-
tifying and caching the pre-computed result to make it reusable
across different applications without repetitive computations.

In PSS, we utilized a hybrid modeling method with both product
contextual and customer behavior information and made it con-
figurable for application-specific goals. We leveraged the state-of-
the-art cloud computing technologies to design a distributed simi-
larity computing solution for scaling. We evaluated our system on
comprehensive modeling and system experiments across multiple
applications. We demonstrated that PSS is able to support product-
based similarity identification tasks with high quality model and
system performance at the Amazon scale.

In the rest of the paper, Section 2 compares the related work to
our system, Section 3 describes our similarity framework and ap-
proach, Section 4 demonstrates the system architecture in details,
Section 5 evaluates the system performance through experiments,
and Section 6 gives the conclusions and future works.

2 RELATEDWORKS
2.1 Similarity Identification Systems
Most of the industry similarity identification systems focus on
providing highly specialized solutions optimized for very specific
application scenarios. They are not flexible enough to support
multiple applications. In general, for any application, there are

mainly two types of signals for similarity computing: product
contextual information, and customer behavioral information.

Content based similarity identification systems have been
adopted throughout industry, they aim to return items with highly
similar contextual information (e.g. image, video, description,
attribute, etc.) to the query item. Among which, visual search
is one prominent application trend: e.g. Alibaba Pailitao Visual
Search [28], Pinterest Visual Search [27], Microsoft’s Visual
Search [9], and they all focus on learning image representations
optimizing for image retrieval problem. Another highly developed
direction is content based recommendation: e.g. [5], which
leverages video contextual information to recommend customers
videos with similar category/search tokens, etc.

Behavior based recommendation systems are also widely ap-
plied, They aim to recommend items viewed/purchased by users
with similar preferences. Youtube [13] learn from customers’ co-
watched behavior for video recommendation. Amzon [2] learn
from re-purchase behavior for Buy It Again recommendation.

PSS supports the hybrid of contextual and behavior based sig-
nals in similarity modeling, and provides enough flexibility to
choose any combination for different applications (e.g. product im-
age, purchase behavior, combination of image & title & behavior,
etc.). Moreover, PSS also allows customer to give their own defini-
tion of similarity for different applications, e.g. identical products
searching, visually similar products recommendation, etc.

2.2 Deep Metric Learning
Another related research domain is deep metric learning, which
has been shown to achieve impressive performance for identifying
similar items at multiple application areas: visual search [27, 28],
recommendation [5, 8, 22, 23], face verification / recognition [17,
20, 21], etc. Based on the relations of items, there are mainly two
types of supervision signals for similarity: pairs of items marked
as positive or negative [1, 20], and triplets of items (anchor item,
positive item, negative item) [7, 14, 18, 19, 21]. The pairwise super-
vision can be trained via deep neural networks like SiameseNets
[3, 4, 11], which is usually relatively easy to train, and pairwise
training data is also easier to collect at industry. In contrast, the
triplets supervision can be trained by Tripletnet [7, 17, 25], which
has stronger capability to preserve ranking information, but it
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usually needsmore careful training strategies (e.g. triplet selection)
to get good results[17]. Both pair-wise and triplet supervisions are
used to optimize for the item embedding, where similar items are
close together, while dissimilar items are pushed far away from
each other in the embedding space.

In this work, we leverage multi-task SiameseNet to train item
embedding with pairwise datasets, which provides flexibility to
support application requirements.

3 PSS FRAMEWORK

Figure 2: PSS overall framework.

As shown in Fig. 2, PSS similarity identification framework has
three main components: a) Product Embedding: At the training
stage, a product embedding learning model is optimized to rep-
resent each product with a feature vector. The embedding should
be encoded with product’s contextual & customer behavior infor-
mation, and be optimized for specific application based similarity
goals. At the query stage, each query item is passed through the
trained embedding extraction model, and represented as an em-
bedding vector. b) Similarity Indexing & Search: At the training
stage, all product embeddings are built into index artifacts based
on their similarity correlations. Then at the query stage, multiple
queries are sent in parallel to retrieve topK ranked similar items
efficiently. c) Post-filtering: For any application that require further
refinement on similarity results, PSS provides a general attribute-
based post-filtering module, which only keeps the items whose
attribute values match to those in the query item. Finally, the prod-
uct similarity datasets are uploaded to the data warehouse, from
where downstream applications (e.g. search, recommendation) can
further consume.

3.1 Product Embedding Learning
Themodule (a) in Fig. 2 is the first step in the workflow and gener-
ates a vectorized embedding for a product, which should concisely
encode key product information required for similarity identifica-
tion. However, the definition of similarity at different applications
may vary a lot. For example, similar shoes usually have similar
heel type, but this similarity criteria is not suitable for the other
products (e.g. electronic devices, furniture). One common solution
is to carefully select suitable input signals and similarity criteria
for each application. However, this is neither scalable nor efficient.
To build a flexible product embedding learning framework, we
use common product information applicable for multiple product
types (e.g. image, title, customer behavior responses, etc.) as input
signals. We leverage SiameseNet to learn from the pairwise (i.e.,

Figure 3: Compound feature generation using both product
content features and customer behavior features.

similar / dissimilar) relationship between products. Meanwhile, we
leverage multi-task learning to cover various similarity tasks (e.g.,
human labeled similarity data, click-through similarity data). Then
at the query stage, the product embeddings can be extracted from
the last layer of SiameseNets.

3.1.1 Feature Extraction from Multiple Contexts. Fig. 3 shows
the process of extracting initial product compound feature from
multiple sources of raw product information. There are mainly
two types of information: product content (e.g. image, title) and
customer behavior responses (e.g. co-purchase, co-view).

As shown on the left branch of Fig. 3, for product content
information, contextual feature for each input content domain is
extracted. For example: image feature (e.g. extract via AlexNet
[12]), title / description feature (e.g. extract via Word2Vec [16]),
etc. Each feature extraction model is trained to focus on a specific
content domain. E.g. AlexNet image embedding, which is trained
on ImageNet [6] for image recognition; Word2Vec embedding,
which is trained on Google News corpus for reconstructing word
linguistic contexts. As shown on the right branch of Fig. 3, for
product level customer behavior information extraction, an Ama-
zon internal service is leveraged to extract product-level behavior
embedding, which is a graph based solution.

As shown at the bottom of Fig. 3, after extracting features
from both product content and customer behavior responses, each
feature is normalized and concatenated together to get the product
Compound Embedding.

3.1.2 Multi-Task SiameseNets for Product Embedding Learning.
The initial product compound feature has a good coverage of all
types of product contextual information, however, it’s not directly
optimized for similarity identification tasks. Thus, as shown in Fig.
4, we build a SiameseNet [3, 11] on top of the compound feature
to learn a more discriminate product embedding from the pairwise
similarity dataset. Furthermore, to enable the flexibility of optimiz-
ing for multiple similarity training goals (for example, customer
behavior similarity goal, human labeled dataset similarity goal), we
leverage multi-task learning.
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Figure 4: SiameseNets product embedding learning.

More specifically, in the training stage (Fig. 4 left), pairs of
similarity training data are forwarded in two branches of networks
with shared weights. Then at the network’s last hidden layer, the
outputs from the two branches are merged and their L2 distance
is computed for similarity prediction. Finally, the pairwise loss
(e.g. contrastive loss) of each optimization task is computed, and
aggregation of weighted losses for all the tasks is the final loss. We
use back-propagation to optimize the network. In the query stage
(Fig. 4 right), we directly consume the learned network to extract
the product embedding for each item.

Mathematically, for an item i , its compound feature fi passes the
L-layer fully connected (FC) networks FFN (.), and each FC layer
is then followedwith a batch normalization [10] layerwhichmakes
the optimization more robust. Finally, the product embedding can
be represented as the last hidden layer of the network:

hLi = FFN (fi )

= σ
(
σ
(
fiW

(1) + b(1)
)
· · ·

)
W (L) + b(L)

(1)

where W (1),W (2), · · · , W (L) are weight matrices and
b(1), · · · ,b(L) are biased terms. σ (.) is the non-linear activation
function (in this paper, we use Relu [12]),

A high quality product embedding is able to pull similar items
closer while push dissimilar items away from each other in the
embedding space. Thus, the pairwise objective function for a task
t is:

Lt = 1
|M |

∑
(i, j)∈M

Lti j
(
yi j ,hi ,hj

)
Lall =

∑
(t)∈T

αt ∗ Lt
(2)

where Lti j is the loss between SiameseNet left branch outputhi and
right branch output hj for task t . yi j is the pairwise ground truth
label (similar/dissimilar),M is the set of training pairs, and |M| is
the training dataset size. T is the set of all tasks. In this paper,
we use contrastive loss for each task, and Lall is the weighted
aggregated loss for all tasks. Note FFN (.) is optimized with the
learning of (2) and once model training is done, FFN (.) can be
used to generate product embeddings.

3.1.3 Pairwise Similarity Data Mining. The major challenge of
training a high quality product embedding from SiameseNet is to
find hard positive/negative training pairs [24]. A naive way is to
randomly select products from the same category as positive pairs,
and products from different categories as negative pairs. However,
there are lots of false positives which do not meet the application
requirements (e.g. pairing a sport style t-shirt and a hip-hop style
t-shirt as positive might not be appropriate), meanwhile the cross-
category negatives are very easy to train, and the convergence is
too quick without contributing to the learning.

In order to make the model training efficient meanwhile ef-
fective for any give task, firstly, we leverage general similarity
customer behavior data sources (e.g. view-to-purchase) to mine
positive and hard negative training pairs. Secondly, we leverage ap-
plication focused data sources (e.g. human labeled similar fashion
items) to min positive/negative training pairs. For any given simi-
larity data source, we further conduct cleaning steps to collect high
quality positive & negative training samples. More specifically, for
positive pair candidates, we remove the pairs which don’t have
high similarity (e.g. cosine similarity < 0.6) on either image / title
/ product behavior embeddings. For negative training candidates,
we remove the pairs which have very high similarity (e.g. cosine
similarity > 0.8) on all embeddings.

3.2 Similar Products Indexing & Search

Figure 5: Distributed similarity indexing and query

After each product is represented with embedding, similarity
indexes (Fig. 2 module b) is built, which enables similarity search
in an accurate and scalable manner. k-Nearest Neighbor (kNN) is
a natural and popular way to do similarity indexing and querying.
The similarity indexing step targets on organizing and recording
all the items in the search space (the set of products from which
we want to find similarities) with a indexing structure, which is
called Index Artifacts, and it can support fast search afterwards.
Popular indexing algorithms include HNSW [15], K-D tree [26].
In PSS, we select HNSW, since it provides a good balance between
accurate similarity indexing and fast searching. The querying step
targets on retrieving similar items for each query from the built
index artifacts.Themain challenges are: 1) How to efficiently build
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Figure 6: Effects of configuring post-filter refinement logic

index for a large-scale search space; 2) How to do similarity search
at scale.

To enable a Amazon scale similar product computing, we devel-
oped a distributed KNN solution illustrated in Fig. 5. To build the
index given very large dataset which cannot fit into a single ma-
chine, we divide the dataset into multiple partitions. Each partition
is small enough, so it can be loaded into the memory of an index
node and used to build a partitioned index. A set of the indices built
from the partitioned dataset is considered as an index collection. It
is referenced together to represent the entire search space for given
query. Similarly, query data is also partitioned and distributed to
a cluster of query nodes. Each query node searches in a partition
index for the query partition and return the sorted top K similar
items for each query in the partition. Finally, all partition results
from the same index collection are pushed to a merge node where
it heap sorts final topk most similar items from all candidate lists
and upload them to destination.

3.3 Post-filtering Refinement
As shown in Fig. 2 module (c), the last process is post-filtering
refinement. For some business use cases, additional constraints
are required to make the similarity identification valid. For exam-
ple, two T-shirts with identical image but different sizes are for
completely different customers. In order to further enhance perfor-
mance, PSS provides the flexibility of adding application specific
constraints through configuring a list of key attributes for sim-
ilarity identification refinement. Any similarity candidates with
unmatched attribute values will be removed in the post-filtering
stage. Fig. 6 shows an example of attribute based post-filtering: (a)
shows similar items without any filtering; (b) shows similar items
with the same color as the query item; (c) shows similar items
with the same dress sewing style as the query item. In production,
different application have enough flexibility to choose its own list
of attributes.

4 SYSTEM ARCHITECTURE
This section demonstrates the system architecture of PSS. As
shown in Figure 7, PSS allows the users to invoke a step-based
workflow for similarity computing through a service call so that
both similarity training and query flows can be instantiated with

Figure 7: Similarity computing as a service

user requests to deliver application specific similarity results. To
process data at large scale, distributed executors are orchestrated
hierarchically at each step to perform the computations on
partitioned data concurrently. To flexibly integrate different
product embedding models to the internal search engine, a
dedicated model pipeline is maintained to automate the model
learning and the hosting process.

4.1 Cache-based Product Embedding
As mentioned in Section 3, Product Embedding is served as a pre-
process step of similarity computing to represent each product as
a vector using a pre-trained product embedding model as specified
in the workflow configs. For example, the user can choose to
represent a product with an image embedding, a compound embed-
ding with both the image and title information, or an application
specific embedding trained with SiameseNet.

Currently, a variety of heterogeneousDeep Learning (DL)-based
models are hosted in our system, implemented on a commonmodel
framework with their own training and inference logics. A light-
weighted elastic training solution is implemented based on AWS
Sagemaker1 to launch the training on demand. When the training
is done, a model artifact will be pushed to a separate model hosting
pipeline where the model is containerized into a docker image
2 and published to an embedding model repository. Later the
search engine launches the model instance from its docker image
to generate the embedding for each product. With such a model
pipeline, it enables the model to be continuously deployed and
flexibly integrated to the similarity service. When code changes
related to the model packages are pushed, the images with newer
versionwill be deployed without any changes on the search engine
side.
1https://aws.amazon.com/sagemaker
2https://docs.docker.com/
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For efficiency consideration, a cache mechanism is leveraged to
avoid duplicate calculations in the embedding extraction which is
expensive especially for the DL-based models. More specifically, a
cache table is associated with model identifier with its embedding
stored as a key-value pair. A cache handler is implanted in the base
model layer to apply to all models. At embedding extraction step,
it first attempts to read the embeddings from the cache table and
returns immediately if hits the cache, otherwise it performs the
actual embedding extraction and writes the new embedding to the
cache table. Note that it is assumed that the product embedding
always remains invariant for the same model. However, the only
exception is when the model is updated and the inference function-
ality changes which is not very common in the production stage.
In that scenario, we will clean up the corresponding cache table.

4.2 Distributed Similarity Computing
4.2.1 Batch Framework. The similarity search engine is built

on a distributed computing framework integrated with the
AWS Batch3 infrastructure which enables efficient and dynamic
resources provisioning and job scheduling for large scale batch
processing. Under this computing framework, the resource pool
is divided by batch queues configured with virtual computing
environments such as number of vCPUs, scaling strategies, etc.;
a Batch scheduler dispatches the job executions across queues in
priority order on optimal computing resources. As the service
is invoked, a master job is submitted to the batch queue. When
the requested computing resource is provisioned, a step-based
workflow is initiated based on the user’s request, following a
predefined workflow graph as shown in Fig. 7.

4.2.2 Distributed Executors. Each step in the master workflow
is scaled by step executors. A primary executor is initiated to index
the source partitions in a manifest file and then distribute the par-
titions to an array of secondary executors for parallel processing.
Each secondary executor is assigned a set of partitions according
to the manifest and is dedicated to process them locally. Both the
manifest and the partition size can be tuned for an appropriate con-
currency level to achieve the overall scaling performance. Multi-
level manifests are used for extreme large-scale processing.

This distribution solution applies to all the major steps. As
mentioned above, embedding executors compute the product vec-
tors on the partitioned product set for similarity computing; filter
executors refine the similarity candidate partitions. The similarity
training and query are implemented in a similar way. In training,
data is split to fit into a single indexing executor node. In querying,
the search executors first perform the topK query on partition
indexes distributively and then a merger collects and merges the
all the partition results from the same query for a final topK .

5 EXPERIMENTS & ANALYSIS
In this section we analyze experimental results from three as-
pects: 1) Offline-evaluation: we describe offline experiment setups,
then test two tasks, pairwise product similarity verification, and
similarity ranking. 2) Online-evaluation: we show the similarity
identification performance in online A/B test on Amazon products.

3https://aws.amazon.com/batch

3) System performance: we test system scalability on large-scale
similarity computing tasks. At last, we visualize the similarity
identification results deployed for multiple productions.

5.1 Offline Evaluation Setups
5.1.1 Input Contextual Information. We mainly experiment on

the Compound feature (Section 3.1.1), which is the integration of
three input contextual information: 1) Image: we use AlexNet[12]
to extract initial image embedding, 2) Title: we use Word2Vec [16]
to extract word-level embedding, then pool all word embeddings to
get a title-level embedding, 3) ProdBehavior : we use an internal ser-
vice to learn product embedding based on customer behavior (e.g.
co-view, co-purchase). We further reduce each feature’s dimension
to 128-dim for computation efficiency. In Section 5.2 & 5.3, unless
explicitly written, the default SiameseNet input is the Compound
feature that integrates image, title, and ProdBehavior features.

5.1.2 Data Sources for Model Training. We introduce two re-
sources for training: customer view-to-purchase (V2P) data, and
human expertise labeled (Labeled) data. V2P Data: It has huge
volume of candidates, but the data quality is relatively noisy. For
positive product pairs, we select the most recent viewed products,
and the purchased products right afterwards. For hard negative
pairs, we select the product viewed N (e.g. N=20) slots before the
purchased product. For both positive/negative pairs, we further do
data cleaning (refer to Section 3.1.3) to remove behavior data irrel-
evant to similarity. In this experiment, we randomly select 100K
positive pairs, and 500K negative pairs for V2P-based similarity
task training. Labeled Data: it’s an accurate data source, but usually
only contains limited number of data since it’s labor intensive to
collect. For positive pairs, we collect domain experts labeled sub-
stitute products (e.g. substitutable apparel products should have
similar image, title, color, material, etc.). For negative pairs, we
randomly sampled product pairs with 5x volume of positive pairs.
For model training, we split 4K positive human Labeled pairs
with 20K negative pairs for human label based similarity task. The
remaining human labeled pairs are for model evaluation, which
will be explained further in Section 5.2.

5.2 Product Similarity Verification
To evaluate the learned product embedding quality (Section 3.1),
we conduct experiments on pairwise similarity verification tasks:
model performance on predict similar/dissimilar labels for pairs
of products. For evaluation, we select 5K positive pairs labeled by
human expertise (Section 5.1.2), and randomly select 25K negative
product pairs. The evaluation metrics are recall at precision 80%,
90%, 95%.

5.2.1 Effects of using different input contextual information. To
quantify the effects of introducing multiple product context infor-
mation (Section 3.1.1), we test different combinations of input con-
textual information. Comparing on R@P80% metric, compound
feature (concatenating image, title and ProdBehavior) gets 43.32%,
while image only gets 29.61%, ProdBehavior only is 32.44%, and
Title only is 7.36%.Thus, different input signals are complementary
to each other, and aggregating all contextual input information can
bring to the best performance on this similarity verification task.
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5.2.2 Effects of Multi-Task Learning. To understand the effects
of supporting configurable multiple sources of similarity train-
ing signals, all the numbers in Table 1 are tested on different
combination of multi-task learning (Section 3.1.2) with the same
SiameseNets structure: four layer fully connected with hidden
nodes number: 256+256+256+256. As shown in Table 1 second
line, if we only leverage the most general product similarity signal
V2P, we’re able to return some high precision substitute products
with reasonable recall, which can be a good option when no extra
application specific training signal is available. As shown in line 3,
when only training with a small set of human expertise labeled
data (e.g. 4k human labeled positive pairs), we can get slightly
better results with V2P. As shown in line 4, when integrating
multiple optimization signals withmulti-task learning, the optimal
results can be achieved via learning complementary information.

Table 1: Comparison of different optimization tasks

Data Augmentation R%@P80% R%@P90% R%@P95%
Compound Feature 43.32 32.31 22.99
View-to-Purchase(V2P) 48.53 18.06 8.62
Labeled 4K 52.87 19.92 7.93
V2P + Labeled 4K 90.46 78.78 68.59

5.2.3 Effects of Different SiameseNet Structures. We conduct
this experiment to understand the effect of using different Siame-
seNet structures (Section 3.1.2). All the models tested in Table 2 are
trained with two tasks: V2P + Labeled 4K. From the fist two lines
of Table 2, we can clearly see the product embedding learned from
SiameseNet is much better than the original compound feature
(refer to Section 3.1.1). Comparing line 2-5, we can clearly see
adding more layers will progressively lead to higher performance
than shallower one when there is enough training data, but the
extra gain might be relatively small when the network is almost
saturated with the given training data (line 4 vs 5). Comparing
the line 4 & 6, or line 5th & 7th, we can observe deeper network
performs slightly better than wider net.

Table 2: Comparison of different SiameseNet structures

SiameseNet Struct. R%@P80% R%@P90% R%@P95%
Compound Feature 43.32 32.31 22.99
256 79.33 53.00 33.33
256 + 256 83.27 64.11 44.04
256 + 256 + 256 88.95 74.42 61.39
256 + 256 + 256 + 256 90.46 78.78 68.59
512 + 256 85.53 66.88 50.39
512 + 256 + 256 89.18 77.03 64.31

5.3 Similarity Ranking
To evaluate the performance on ranking task, we test on a ranking
dataset collected from click-through data in substitute recommen-
dation. It has 15K query products, and in-total 150K products in
searching scope. For ranking evaluation, we generate topK substi-
tutes for each query product. Similar to [13], We use Normalized

Discounted Cumulative Gain (NDCG) andMeanAverage Precision
(MAP) for performance evaluation. NDCG measures the quality of
ranking. Mathematically, the formula of DCG at rank position k
is defined as: DCGk =

∑p
i=1

2reli −1
log2(i+1)

, where i is the position
in the recommended list and reli ∈ {0, 1} stands for whether
the ith recommendation is labeled positive. NDCG is the ratio
between DCG and the largest DCG possible. MAP measures the
average accuracy of a ranking algorithm. A query product’s AP
is the area under the Precision-Recall curve of that query: AP =∫ 1

0
P(r)dr ≈ ∑K

k=1
P(r)(r(k) − r(k − 1)), where P(r) is the

precision at recall level r and r(k) stands for the recall at top k
recommendations with r(0) = 0. In practice, AP is approximated
by a finite sum. We choose K = 30 in our calculation. MAP is the
mean of AP over all the queries. For the SiameseNet model, we use
256 + 256 + 256 + 256 structure.

5.3.1 Comparison on Different Product Embedding. Comparing
first 3 rows of Table 3, image feature relatively have high perfor-
mance as a single contextual information source, since image is
usually more easily to be captured by customers. Comparing line
4 with first 3 lines , aggregating more product contextual informa-
tion (all vs image/ProdBehavior/Word2Vec only) can capture more
complementary signals, and get better similarity ranking results.
Comparing line 4 & 5, we can observe product embedding learning
through SiameseNets can encode extra information for similarity
identification, and generate better ranking results.

Table 3: Ranking results on different product embeddings

Prod. Embeddings NDCG@1 NDCG@10 NDCG@20 MAP
Image 0.3585 0.4661 0.4778 0.4448
ProdBehavior 0.2712 0.3593 0.3712 0.3433
Title 0.2974 0.3907 0.4031 0.3729
Compound 0.3928 0.5093 0.5255 0.4899
SiameseNet (ours) 0.4143 0.5538 0.5720 0.5267

5.3.2 Performance on Different Product Categories. As shown
in Table 4, for different categories, customers show strong signal
preferences, which further justify the importance of providing
flexible similarity signals for multiple applications. For example,
for fashion categories (e.g. apparel, shoes) and home category, the
image is the dominant signal. While for other general categories,
e.g. PC, toy, aggregating multiple sources of contextual informa-
tion can better help customers with multiple preference. We also
observe the SiameseNet based product embedding can overall do
better similarity ranking across multiple product categories.

5.4 Online A/B Test
To evaluate the effectiveness of our models in real world, we
conduct the online A/B test for typical similarity applications in
E-commerce. To measure the actual customer engagement differ-
ences between the control (A) and treatment (B) groups, the lift in
Purchased Units are collected for the applications in Amazon.com.
Note that we only report the purchased units lift due to the page
limits as other important metrics such as products purchased prof-
its lift, etc. are highly aligned.

7



Table 4: Average precision for click-through data

Category pc apparel jewelry luggage home toy office product shoes kitchen All
Image 0.3567 0.4662 0.3223 0.4602 0.7303 0.2692 0.3152 0.4127 0.2905 0.4448

ProdBehavior 0.3168 0.1328 0.7367 0.4271 0.2087 0.4691 0.5807 0.1570 0.5317 0.3433
Title 0.3514 0.1707 0.6373 0.4444 0.2552 0.5281 0.6435 0.2171 0.6118 0.3729

Compound 0.4664 0.2771 0.7624 0.5570 0.4051 0.5982 0.6865 0.3332 0.6798 0.4899
SiameseNet (Ours) 0.4476 0.5687 0.6006 0.5392 0.6901 0.4659 0.4688 0.4328 0.5080 0.5267

5.4.1 Substitutes Recommendation for OOS Products. This rec-
ommendation application displays the top similar substitutes for
customers when their selected products are out-of-stock (OOS).
We choose this application because it has good coverage on most
of the product types (e.g. apparel, furniture, electronic devices,
etc.). For the treatment group, the substitute data is learned from
product image and behavior information, and constrained on key
attributes matching (e.g. material, color, etc.) through PSS. For
the control group, the shown recommendation is the voting of
best results from all in-production OOS recommendations meth-
ods. This experiment results in a significant lift on number of
purchased items (+6.58%, p=.03) in the treatment vs. control during
four weeks’ experiment period.

5.4.2 Similar Fashion Product Recommendation. This applica-
tion shown on personalized Amazon Fashion page is aimed to
encourage customer to explore similar new fashion products based
on their selections. For the treatment group, the similar fashion
items are learned from items with both similar images and title /
description through PSS. For the control group, it’s the voting of
best results from all in-production personalized recommendations
for fashion products. This experiment results in a lift on purchased
units (+1.02%, p-value = 0.04) in the treatment vs. control during
four weeks’ experiment period.

5.5 Distributed Computing Performance
To evaluate the scalability of our PSS service, we compare the
similarity computing performance of our distributed solution with
the non-distributed one. To setup the environment, the computing
queue is configured with a cluster of virtual computing nodes
hosting on an EC2 host pool.

Four groups of tests are prepared with varied input size ranging
from 1MM to 100MMof products. Each input dataset is a list of 128-
dim image embeddings of products extracted from several related
categories and used as both indexing and query input within the
test group. For each group, similarity indices are first built using
the given dataset and then the top 1000 nearest neighbors are
searched from the indices built for each item in the set. This flow is
performed in both non-distributed and distributed scenarios. In the
non-distributed case, single executor is launched and provisioned
with sufficient resources to process the entire dataset, specifically
the memory which is considered as the bottleneck in a traditional
KNN solution; in the distributed case, we scale up to 500 partitions
in query while restrict the concurrency level in indexing to 5
partitions for each dataset. This is to minimize the overhead in
merging topK frommultiple index models.The amount of resource

Table 5: Performance of Distributed Similarity Computing

Data Size Indexing Query
Speedup Cost Save Speedup Cost Save

1MM 4.65 78.48% 41.63 33.14%
10MM 4.40 77.26% 48.42 46.16%
50MM 5.33 81.22% 70.33 61.90%
100MM 3.52 71.60% 77.82 63.92%

allocated to a distributed executor is in proportion to the size of the
data partition assigned to it.

Table 5 demonstrates the performance and efficiency improve-
ment that our distributed similarity computing can achieve when
benchmark against a non-distributed solution. From the result, we
can see that both distributed indexing and query constantly out-
performs the corresponding non-distributed solution. Although
distribution introduces overhead from both resource provisioning
and partition merging, it is able to speed up 4.5X on average in
index-building with 5 partitions on the training dataset, and 59.6X
in searching for top 1000 similar items with 500 partitions on the
query dataset while still as good as the non-distributed with a
99.5% overlap of results. With current setting, the indexing can
achieve its optimal performance when the dataset is divided into
10MM items per partition; in query, the performance improves
as the data size becomes larger, distribution on smaller partitions
does not gain as much as the bigger ones as the above-mentioned
overhead dominates over the actual searching time. We also com-
pare the costs in both solutions based on the total vCPU and
memory allocation to the executors. Although more executors are
launched in the distributed version, each executor tends to run
much faster with less resource which substantially improves the
overall resource utilization. As a result, we are able to save as much
as 77.14% and 51.28% of resource on average in distributed indexing
and query respectively.

5.6 Visualizations
As shown in Figure 8, our PSS can support flexible similarity def-
inition for multiple applications via configuring input contextual
information, and application-related optimization goals. For exam-
ple, in the duplicated product identification application (Figure 8
top), image and title information are consumed as inputs, and the
optimization goal is to identify products with near-identical prod-
uct image / title as similar. The visual similar recommendation and
substitute product search are the visualization for the productions
discussed in Section 5.4.
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Figure 8: Visualizations of different similarity applications.

6 CONCLUSIONS & FUTUREWORKS
This paper presents PSS, a flexible and scalable similarity identi-
fication system, which supports different product similarity com-
putation applications. With configurable SiameseNet-based mod-
els, PSS is capable of generating various high quality application-
specific product embeddings and is scalable of efficient similar-
ity computations at Amazon scale owning to its cloud-based dis-
tributed system framework. In the future, we will extend our solu-
tion to identify similarity among entities with richer information
such as video or audio. We will support different types of product
embedding such as triplet model or graph-based models to fit more
production use cases. We are also considering making PSS a public
service available for research communities to use.
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