Lessons Learned Addressing Dataset Bias in Model-Based
Candidate Generation at Twitter

Alim Virani*, Jay Baxter”, Dan Shiebler”, Philip Gautier, Shivam Verma, Yan Xia, Apoorv Sharma,

Sumit Binnani, Linlin Chen, Chenguang Yu
[avirani,jbaxter,dshiebler,pgautier,shivamv,yanx,apoorvs,sbinnani,linlinc,chenguangy] @twitter.com
Twitter Cortex

Abstract

Traditionally, heuristic methods are used to generate candidates
for large scale recommender systems. Model-based candidate gen-
eration promises multiple potential advantages, primarily that we
can explicitly optimize the same objective as the downstream rank-
ing model. However, large scale model-based candidate generation
approaches suffer from dataset bias problems caused by the infeasi-
bility of obtaining representative data on very irrelevant candidates.
Popular techniques to correct dataset bias, such as inverse propen-
sity scoring, do not work well in the context of candidate generation.
We first explore the dynamics of the dataset bias problem and then
demonstrate how to use random sampling techniques to mitigate it.
Finally, in a novel application of fine-tuning, we show performance
gains when applying our candidate generation system to Twitter’s
home timeline.

CCS Concepts
« Computing methodologies — Model development and
analysis; Machine learning approaches.

Keywords
machine learning, deep learning, experimentation, social net-
works

ACM Reference Format:

Alim Virani®, Jay Baxter”, Dan Shiebler”, Philip Gautier, Shivam Verma,
Yan Xia, Apoorv Sharma, Sumit Binnani, Linlin Chen, Chenguang Yu. .
Lessons Learned Addressing Dataset Bias in Model-Based Candidate Gen-
eration at Twitter. In Proceedings of International Workshop on Industrial
Recommendation Systems 2020 (KDD IRS2020). ACM, New York, NY, USA,
9 pages.

1 Introduction

Most recommender systems at Twitter operate at a massive scale.
These systems recommend to our users Tweets they will engage
with, ads they might click on, and other users they might follow.
Often the corpus of candidates is too large to exhaustively score
all items for every user using the heavy ranker. Rather, when oper-
ating at this scale, recommender systems go through a candidate
generation (CG) phase (see Figure 1) which efficiently narrows the
entire corpus down to a manageable candidate set. After this phase,
the retrieved candidates are then ranked using a computationally
heavier model.

Because scoring all candidates is infeasible, large-scale CG sys-
tems at Twitter have relied on a combination of domain knowledge,
heuristics and handwritten rules to narrow down the candidate
set. For example, if a user has engaged with the content of a given

* Primary Contributors.

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

© s
Candidate Generator A |:>
Pz
< 10%-10* 10'- 102
Item |1:0; Candidate Generator B I:> Ranker I:> JRiocict
Corpus Surface
S|
Candidate Generator C :>
.)

Figure 1: Candidate generation and ranking pipeline.

author in the past, a CG algorithm could suggest new content from
the same author.

While heuristic CG systems have been highly successful in the
past, they can be difficult to extend and maintain, which leads to
performance plateaus. Additionally, heuristic candidate generation
methods usually lack the model capacity to represent the more
complex relationships, resulting in lower quality recommendations.

For instance, the individual heuristic CG algorithms that source
Tweets for a user’s timeline may recommend the top Tweets in that
user’s geographical area and the top Tweets in that user’s interest
areas separately. The union of these candidate sources may exclude
a Tweet that was barely excluded by both heuristics but which
is relevant and engaging to the user because of its multi-faceted
appeal.

Model-based candidate generation is one potential solution to
these problems, but it requires careful handling of several practical
challenges before outperforming heuristics in production. This pa-
per discusses some of the practical challenges that arise in building
such a system.

The first challenge is scale: such a model would need to generate
candidates for a user from the entire corpus of items with very low
latency. To achieve this performance, we use a two tower network
to learn query-item co-embeddings that we then serve with an
approximate nearest neighbors (ANN) system.

Another major challenge, and the focus of this paper, is dataset
bias. The theoretical challenges of dataset biases are well-documented
in the literature [6] [13]. However, most of the existing literature
focuses on the dataset bias problem as it relates to the ranking
phase of recommender systems, whereas our focus is specifically
on candidate generation. Datasets created by sampling from served
data are not representative of the entire corpus, and as a result,
models trained on these datasets have been shown to create filter
bubbles [17] and degenerate feedback loops [12]. The impact of
bias in CG is particularly challenging because in CG, the inference

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

set is the entire corpus and the cost of serving very low-quality
candidates is prohibitively high.

This work is an account of the lessons we have learned when
dealing with bias in data from served traffic in the context of model
based candidate generation. The contributions of this paper include:

e Empirical evidence for the impact of dataset bias on a model-
based candidate generation system.

o A set of practical suggestions for how to do random negative
sampling in such a system.

e A novel application of fine-tuning to training a two tower
model for candidate generation. This approach shows signif-
icant wins in a large scale online A/B test making Twitter
home timeline recommendations.

The rest of the paper is structured as follows: We begin in Sec-
tion 3 by giving a description of the dataset bias problem in model-
based CG and some shortcomings in traditional dataset bias cor-
rection approaches such as inverse propensity score weighting and
naive random negative sampling. In Section 4, we describe our
model, system architecture, and our model evaluation criteria. In
Section 5, we describe techniques for improving random negative
sampling and show results demonstrating their efficacy. Finally, in
Section 6, we describe the fine-tuning approach to bias correction
and include its successful results in production.

2 Related Work
2.1 Dataset Bias

There are multiple sources of data-related biases that occur
across the recommendation pipeline. One example is position bias
[10] which is caused by the order in which items are displayed.
Another is popularity bias [1] which is caused by recommending
some items in the corpus far more frequently, causing negative
effects such as the inability to suggest less popular (long tail) items
[4].

The dataset bias central to this work, a form of selection bias,
is caused by only observing feedback on recommendations made
from existing recommender systems.

One approach attempts to correct for this bias by intervening in
data collection through randomized exploration [13]. In particular,
Chen et al. [6] address dataset bias in candidate generation by pro-
moting off-policy exploration using techniques from reinforcement
learning. Our approach does not attempt to correct for bias using
exploration due to product constraints which prevent us from using
the same exploration techniques.

Swaminathan et al. [19] uses an approach to correct for bias that
does not require active exploration. Rather, they use counterfac-
tual estimates of performance and inverse propensity scoring (IPS).
However, their approach is limited to the ranking phase. Indeed,
they point out that this bias is particularly difficult in the context
of candidate generation: Not only are some recommendations over-
represented but others are missing altogether.

2.2 Two-Tower Networks

Two-tower networks, as described in Section 4.2, are a class of
deep learning models useful for co-embedding queries and candi-
dates in a common embedding space. Query and candidate embed-
dings are computed separately by each tower. This avoids having to

Virani, A, Baxter,)., Shiebler, D.*, Gautier, P., Verma, S., Xia, Y., Sharma, A., Binnani, S., Chen, L., Yu, C.

recompute candidate embeddings for every query. Importantly, it al-
lows those embeddings to be indexed into an efficient approximate
nearest neighbor system.

This makes them a popular choice as a candidate generation
model [14, 20]. Covington et al. [7] use a two-tower architecture to
co-embed YouTube users and YouTube videos.

Negative sampling is a common technique in recommender sys-
tems, especially in the context of sampling from implicit negative
feedback. In such cases, model performance is highly sensitive to
the sampling distribution and the number of sampled negatives [9].
Our findings show that this extends to the context of model-based
candidate generation.

2.3 Approximate Nearest Neighbor Search

Exact nearest neighbor algorithms do not work well on rela-
tively high dimensional data: due to the curse of dimensionality,
it is infeasible to find an exact K-nearest neighbor solution when
dealing with a massive corpus. A more practical solution is to use
an approximate nearest neighbor search which allow some errors
in return for much higher search speed.

There are many open source implementations of approximate
nearest neighbor search. Examples include Spotify’s Annoy [3] and
Facebook’s Faiss [16]. Our framework used the graph-based HNSW
algorithm [15]. HNSW offers state-of-the-art performance [2] and
supports index updates.

3 Problem Description

In the following section we study the dataset bias problem and
the use of sampled random negatives. This will motivate our con-
tributions in Section 5 and 6.

Let us define a recommendation query q as a request for a rec-
ommendation for a user in a particular context, where a context
captures all known information about the user’s request (e.g. the
time of day, the current state of the user’s app, etc.). A “candidate”
is an element of the set of items that we want to recommend. For
example, a context could be a user opening the Twitter app by
clicking on a particular notification (and would include information
about that notification), and our set of candidates could be the set
of all recent Tweets.

Consider the corpus of all candidates c1, ¢z . . . ¢, € C and the set
of all queries q1,qz . . . qm € Q. For a given query g; and candidate
c; served to the user, the binary label r;; = 1 if the user engages with
(e.g. favorites) the candidate. Because the relevance depends on
user feedback, we model it as stochastic, i.e. r;; = 1 with probability
pij and 0 otherwise.

The role of candidate generation is to return a candidate set Cq
for a query g that is a subset of the corpus C such that Cq contains
the candidates with the highest p;;, i.e. the best candidates to serve
for this query. We infer a model f which takes in a (query, candidate)
pair and returns the probability that the candidate is relevant to
the query, i.e. f(ci,qj) = pij-

For a given query g; we can partition the corpus into three broad
categories. The first two categories contain Tweets that are irrele-
vant to the query in the sense that p;; = 0. They are differentiated,
however, by feedback external to the relevance problem: whether
they are a detriment to the user experience beyond the scope of the

query.

Lessons Learned Addressing Dataset Bias in Model-Based Candidate Generation at Twitter

Relevant and engaging candidates: First, there are relevant
candidates, where for many of these candidates p;; is high.

Relevant but not engaging candidates: These candidates are
relevant to the query and don’t provoke a strong negative reaction.
However, they also aren’t engaging: p;; is close 0. As such their
contribution to user experience is limited, but at least the impact to
the user experience is not particularly negative beyond a potentially
boring interaction.

Extremely irrelevant candidates: Finally, extremely irrele-
vant recommendations, such as showing a user a Tweet in a lan-
guage they do not understand, may frustrate the user and deterio-
rate their faith in the platform. Some candidates are not only irrele-
vant, but also are harmful to the user experience and directly harm
retention. We note that language mismatch is merely an illustrative
example and does not cover all possible reasons a recommendation
could be in this category.

We can decompose the candidate generation task into the fol-
lowing two components, which we address separately:

o Avoid retrieving "extremely irrelevant” candidates
o Retrieve "relevant and engaging" candidates rather than "rel-
evant but not engaging" candidates

In the remainder of this section, we will show that naively train-
ing on served traffic attempts to solve the second goal but not the
first, and training only on randomly sampled negatives solves the
first goal but not the second.

3.1 Served Traffic

A standard formulation for constructing a dataset D with which
to to train f is to randomly sample (c;, gj,7ij) € D iid from a
uniform random distribution over the set of all candidates C and
all queries Q. In order to construct such a dataset, we would need
to serve truly random candidates to users. Unfortunately, this is
not a realistic option because we will serve "extremely irrelevant"
candidates to users. If a user in Germany opened Twitter tomorrow
morning and saw a mishmash of random Japanese and Spanish
Tweets on their Timeline, this would almost certainly be an unac-
ceptably poor experience for that user.

In lieu of serving with a uniform probability we could instead
serve according to a probability weighted by p;;. If we serve (query,
candidate) pairs according to a distribution that approximated p;;
then we avoid serving mostly "extremely irrelevant” candidates to
users. In principle, as long as Q(gj, ¢;) > 0 for all i and j, then we
could use inverse propensity score weighting to weight training
examples. While we can not observe p;; we can use an existing
model that approximate it.

In practice, importance sampling is challenging in the context
of candidate generation for two reasons. First, existing models do
not perform well across entire corpus and therefore cannot be used
to guide sampling. More importantly, it would still require us to
show a nontrivial amount of "extremely irrelevant” candidates that
will actively hurt user experience, which is not acceptable from a
product perspective.

In practice we can only draw labeled training examples from
served candidates C that have been selected by some existing
candidate generators.

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

Figure 2: These concentric circles (not to scale) illustrate the

three categories of datasets that we discuss in Sections 3.2
and 3.3.

All ltems

— Random Negatives

Served Items

\

_——+— Implicit Negatives
|
\ |

Engagements
(Positives)

3.2 Explicit and Implicit Feedback

For most product surfaces at Twitter, we can get consistent and
high quality positive feedback for relevant query candidate pairs.
When a user engages with a candidate (e.g. clicking on an item) she
is explicitly indicating that this candidate is relevant to her. When
training the two-tower model we derive positive (query, candidate)
pairs (i.e. rjj = 1) from these actions.

Unlike positive examples, it is very challenging to derive negative
examples from explicit negative feedback. Unfortunately, very few
product surfaces across Twitter get significant amounts of explicit
negative feedback from users. Such feedback tends to be minimal
and highly skewed towards very specific circumstances. For in-
stance, only a small percentage of our users ever use the "show less
often", mute or block buttons available on their Tweet timelines,
since they require more than one click.

As an alternative we can obtain irrelevant (query, candidate)
pairs using implicit negative feedback. If a user does not follow an
account we suggested, she implicitly tells us that this suggested
account was not relevant to her.

Clearly the lack of positive engagement cannot always be under-
stood to mean a lack of relevance. There are many reasons why a
user may not engage with a recommended candidate that are not
related to its relevance, so implicit negative feedback will always
be noisy. Nevertheless, we can assume that these implicit negatives
are less relevant on average than those items the user has given
positive feedback for.

Figure 2 illustrates these categories: engagements (positives) are
explicit feedback and are all "relevant and engaging”, served but
not engaged items are implicit negative feedback (mostly "relevant
but not engaging"), and random negatives comprise all not served
content, which has all three types of content, but mostly "totally
irrelevant and not engaging” and "relevant but not engaging".

An intuitive approach is then to construct the dataset by sam-
pling (query, candidate) pairs (c;, q;) from C;j. We set r;; = 1if the
pair has positive explicit feedback (i.e. it has been engaged with)
and low if it has negative implicit feedback (i.e. it has not been
engaged with).

Unfortunately, models trained in this way perform very poorly
when used for model based candidate generation. The reason for
this is that we require our model to find the best candidates in the
entire corpus C even if all our training data is derived from Cg. If

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

the model has never seen any candidates from outside of C$, its
performance may be nearly random on the vast majority of C. The
reason for this is that Cf] contains only (query, candidate) pairs
where the candidate was recommended to the query by an existing
recommendation algorithm. There are extremely few elements of
Cy for which the candidate is a terrible recommendation for the
query. Shown in Table 1, a model trained this way recommends
off-language content to a high proportion of users (over 75%).

3.3 Sampled Negatives

Given that training on served traffic alone produces models that
make poor recommendations, what else can we resort to?

One thing we can do is take advantage of the property that for
a random query gj, pij ~ 0 for most ¢; € C. Therefore, we can
reasonably treat randomly sampled candidates as negatives.

When we train our model with explicit feedback samples as
positives and random samples as negatives, our model learns to
distinguish relevant content from completely irrelevant content.
However, a model trained this way will be less effective at distin-
guishing somewhat relevant content (where p;; still tends to be
near 0) from engaging content.

After retrieval, the candidate set Cq will still go through a rank-
ing phase. In that sense, it’s the ranking model’s task to be able to
distinguish between the "relevant but not engaging" and "relevant
and engaging" content in Cq. Still, the larger the portion of candi-
dates c; in Cy that have p;; ~ 0, the more the quality of the output
ranking will suffer: the number of "relevant and engaging" candi-
dates that can be outputted by the ranker is bounded by the number
of "relevant and engaging" candidates included in the candidate
generation phase.

Shown in Table 1, these models perform better than those trained
on negatives from implicit feedback, since they can correctly filter
out "extremely irrelevant” candidates. The challenge of training
a candidate generation model using sampled random negatives
is to improve performance on the second objective - retrieving
candidates that will be engaging - without sacrificing the former.

In sections 5 and 6 we present our solutions to address this
challenge.

3.4 Demonstration of Bias on MovieLens

To illustrate the issue of bias in model-based candidate genera-
tion, we conduct an experiment on the MovieLens 1M dataset [8].
The experiment simulates the process of only training on biased
data that has been selected by a previous ranker. It shows that, even
as performance on the biased test set increases, performance on
the full test decreases.

First, we interpret all samples in the Movielens dataset as explicit
positives. Next, we uniformly sample random (user, movie) pairs
and treat these random samples as negative samples. Then, we
distinguish these “explicit positives” from the random negatives by
training an MLP classifier which takes user and movie embeddings
as input.

We train this model in two phases. In the first phase we simply
train the model on the full dataset. We split the dataset into train-
ing/testing based on user ids: we place 80% of users into the train
dataset and 20% into the test dataset. We report the performance of
the model in this stage with the green dotted line in Figure 3.

Virani, A, Baxter,)., Shiebler, D.*, Gautier, P., Verma, S., Xia, Y., Sharma, A., Binnani, S., Chen, L., Yu, C.

In the second phase we simulate the effect of training on biased
data. First, we run the unbiased model from the first phase to score
every sample in the train and test datasets. Then, we vary the
sampling ratio 7, where 7-biased train/test datasets are the subsets
of the train/test datasets that include only examples with a predicted
score from the unbiased model larger than .

Effect of Impression Bias for Model Tuning

—=-- baseline
—— biased evaluation
—— unbiased evaluation

0.9 1

0.8 1

Accuracy
o
~

N

o
o
L

0.5 1

0.4 4

0 0.1 0.3 0.5 0.7 0.9
Sampling Threshold

Figure 3: Effect of the biased data for model training: as the
sampling threshold 7 increases, performance on the biased
test set increases while performance on the full test set de-
creases.

These biased datasets are akin to datasets derived from only
served data: they only include recommendations that a previous
model ranked highly. The red line in Figure 3 shows the perfor-
mance of a model trained on the 7-biased train dataset over the
r-biased test dataset, and the blue line shows the performance of
this model on the full test dataset.

As 7 increases, we see that performance on the r-biased test
dataset increases, but performance on the full unbiased dataset
decreases. That is, if we only look at the model’s performance
on served traffic, the model appears to perform better as we set
stronger filters on the data that is “served in production”, but per-
formance on the entire dataset (including the unserved candidates
below the 7 threshold) actually decreases. Unfortunately, in the
case of candidate generation at Twitter scale, 7 is extremely high
as the number of available items to recommend is many orders of
magnitude larger than the number served. This provides evidence
as to why we observe that a model based candidate generation
algorithm trained only on served traffic performs so poorly.

4 Experimental Setup
4.1 Product Surfaces

Because the two tower network model-based candidate genera-
tion approach is quite general, in this paper we describe applications
to four different Twitter products.

In the "Home Timeline", "Who To Follow", and "News Article
Push Recommendations" products the recommended items are
Tweets, accounts to follow, and news article links respectively. The

Lessons Learned Addressing Dataset Bias in Model-Based Candidate Generation at Twitter

"Notification Landing Page" is similar to the home timeline in that
we recommend Tweets to users, but has a different context: where
the home timeline context is more general, the notification landing
page’s context includes the specific Tweet the user just clicked in
their notification, so we are able to show similar content to that
target Tweet.

While further details of the product concerns specific to these
applications is outside the scope of this paper, we include results
from multiple products to demonstrate the flexibility and generality
of this candidate generation approach.

4.2 Two Tower Networks

In our approach, for all product surfaces, we use a two tower
network (see Figure 4) to encode query and candidate embedding
vectors, e and ce respectively, from input features, g' and ¢’ re-
spectively.

[] — Query
Embedding q,
Query
Features | f--—-—= |-
qi
L o 5(q,, C,)
] o) | Engagement
B Objective
Candidate
Features | [~ [~
c/’
ANN Index
(Online
L Candidate Prediction)

L Embedding c,

Figure 4: Two Tower Network and ANN.

Each tower of the model learns a separate function, h(c?) and
g(q"), which encode the embeddings’ vectors: ¢, = h(c') and g, =
9(¢"). These functions are learned together as the towers are trained
jointly to co-embed relevant (query, candidate) pairs in close prox-
imity and irrelevant ones further apart. The modeling task can be
framed as classification where the positive cases are relevant (query,
candidate) pairs and negative if they are irrelevant. Such models
can be trained using a binary classification loss function like cross
entropy.

In this way, we model relevance as proportional to the simi-
larity between a (query, candidate) embedding vector: f =pij =
o(s(ce, ge)) for some similarity function s. Cosine similarity is a
commonly used metric to calculate the similarity (relevance) be-
tween both embeddings (and the one we use in practice throughout
the paper’s results), but other viable alternatives include the inner
product and euclidean distance.

Given a query q and its embedding vector g., we create a can-
didate set Cg from C by finding the K candidates with the closest

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

embedding vectors to ge. In a standard K nearest neighbour search,
where this model would be evaluated for each candidate ¢ € C for
every new query ¢, these searches would be prohibitively compu-
tationally expensive. The reason for the two-tower architecture
(rather than fully connected) is that it enables us to decouple the
user and candidate networks. While both are trained jointly, when
used in production at inference-time, the candidate network is eval-
uated either at write-time (as candidate features are updated, e.g. a
Tweet receives new engagements) or on a fixed cadence, and the
resulting candidate embeddings are loaded into the nearest neigh-
bor index. Then, when a time-sensitive query (user-context pair) is
made, the nearest neighbor index looks up the closest neighbors
ce to g and returns them. In order to compute nearest neighbors
efficiently, we use approximate algorithms- namely HNSW [15].

This modeling setup offers an intuitive explanation of why we
cannot train on served traffic (Cfl): A well formed embedding space
would be one that maintained a distance between every (query,
candidate) pair in proportion to their relevance, including pairs
that cannot be derived from g and Cfl,

4.3 Model Evaluation

In Covington et Al [7], they stress that online A/B testing had
an outsized importance when testing their candidate generation
models. While we also use A/B testing to get definitive results for
a model, we would also like to evaluate the quality of a model
offline. Testing models online using A/B tests is a time consuming
process and one that is not suitable to guide model iteration. Ideally,
we want an offline test that correlates to online performance on
engagement metrics and hopefully also user retention metrics.

Unfortunately, model performance on a single test set is not
sufficient to ensure that the candidates retrieved will be relevant
and engaging. We have found that a combination of offline testing
on multiple test sets (i.e. ones with implicit and sampled negatives)
and K-nearest neighbor based evaluations serve as better indicators.

4.3.1 Offline Metrics When training the model as a classification
task we measure standard metrics on the test set such as ROC-AUC.
In the product surfaces outlined in Section 4.1, recommendations
are made independently across queries. In such cases, we mainly
care about the relative ordering of candidates within a given query
(e.g. the order in which we show items to the user). For this reason
we also measure performance using average ROC-AUC per-query.
This has the added benefit of being applicable to non-classification
models such as those that use triplet loss (see Section 5.2). The large
size of the corpus makes manually labeling evaluation data infeasi-
ble. Owing to this, we only evaluate these metrics on production
data (relying on implicit and explicit user feedback). We attempted
to measure recall@k by assuming unlabeled data was negative but
this did not work well in practice: good models tended to retrieve
good candidates from the corpus that were never shown to the user.
Finally, in model-based candidate generation, since the majority
of our training set often comes from items that were never served
in production, it sometimes doesn’t make sense to evaluate using
per-query metrics, in which case we use per-user metrics.

4.3.2 K-Nearest Neighbor based Evaluation Methods While perfor-
mance metrics on the test set are important we also need a stopgap
evaluation to detect when performance on our test set is not reliable.

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

These are situations where the model performs well on evaluations
metrics, such as per-user ROC-AUC, but does not retrieve good
candidates. In Section 6.1.1 we train such a model: It performs well
on the test set but retrieves irrelevant candidates.

K-nearest neighbor based evaluations are useful in detecting
these sorts of situations. We use the trained model to generate
embeddings for a sample of queries Q’ and candidates C’. Using
exhaustive K-nearest neighbor exhaustive search, we generate a
candidate set Cg~ from C” for every query g; in Q”.

Of course, we cannot measure r;; for most of the retrieved can-
didates ¢; in Céb_. However, we can use other coarse measures of
how related c; and g; are.

These are proxy metrics that can serve as a sanity test, and pri-
marily act as a placeholder for qualitative evaluation, e.g. measuring
how many of the retrieved candidates are a different language as
the user.

Note that a significant percentage of users consume content in
a different language than their primary language or incorrectly
set their primary language, so 0% is an unrealistic and undesirable
score, but a very high language mismatch percentage is indicative
of poor model performance.

Note also that if we simply wanted our model to recommend
content that was always in the same language as the user, we could
easily implement that with a hard constraint. However, the point of
the language mismatch evaluation is that we can detect models that
recommend extremely irrelevant content that would actively harm
the user experience. It serves as a quantitative proxy for qualitative
testing by human crowd raters.

Other times, K-nearest neighbor metrics can be used as a diagnos-
tic criteria rather than as a metric. For example, when working on
popularity corrections, we compute the Popular-Recommendation
Pearson Correlation: the Pearson correlation between item popular-
ity and its likelihood of being in users’ top 5 generated recommen-
dations. Item popularity is defined in a product-area specific way:
e.g. for "who to follow" (account recommendations), it is measured
as the number of followers an account has, whereas for e.g. Tweet
recommendation in the home timeline it is measured as the number
of engagements the Tweet has received.

5 Techniques Part 1: Sampled Negatives

This section explains key insights we learned when training
our two tower model with randomly sampled negatives. These
lessons were gathered through multiple efforts across many product
surfaces.

5.1 Sampling Ratio

In what proportion should we add randomly selected negative
examples to our dataset? We have found that with fewer sampled
negative examples a model tends only to learn very broad decision
boundaries. Indeed, model performance tends to increase with the
number of negative samples.

To illustrate this we conduct the following experiment on a
system that recommends Tweets related to other Tweets (the query
and candidate are both Tweets): we train several two tower models
while increasing the ratio of negatives to positives and measure
offline performance. Figure 5 shows that offline metrics generally

Virani, A, Baxter,)., Shiebler, D.*, Gautier, P., Verma, S., Xia, Y., Sharma, A., Binnani, S., Chen, L., Yu, C.

improve as we begin to introduce more sampled negative examples
into the dataset.

Global ROC-AUC

0.56
0.55
0.54
0.53

Per-User ROC-AUC

0.540
0.538
0.536
0.534
0532

0.530

Popul ion Pearson Correlation

0.005
0.000
-0.005 |
-0.010
-0.015
-0.020

Language Mismatch

0.51

050
0.49 4
0.48 |
047 4
0.46 |

T T T T T T
0 5 10 15 20 25

Number of Sampled Negatives per Positive

@
8

Figure 5: This plot shows how offline metrics change as we
increase the number of negatives that we sample for each
positive. Metric definitions described in Section 4.3.

5.2 Deep Triplet Loss

Increasing the number of randomly sampled negatives lead us to
explore using a comparative modeling task; specifically deep triplet
loss. This is a common technique when learning embeddings and
proved very successful in facial recognition tasks [18]. As far as
we can ascertain, our application of it to a candidate generation
recommender system is novel. Here the query g is treated as an
anchor and the triplet is completed with a positive and negative
candidate, ¢c™ and ¢ respectively. The model learns to make c*
closer to the anchor relative to ¢ by minimizing the loss function

max(0, |ge, C:|d = Iqescela + @) o))

In negative sampling, the (query, candidate) pair has no label. As
a consequence, we have to treat each one as equally irrelevant by
setting r;; = 0. Note that this is a false assumption: A Tweet about
baseball will not be relevant (ostensibly) to a football fanatic but is
still more relevant than one about cooking. This makes it difficult
for a pointwise model since we are explicitly encoding this false
assumption into the task.

The advantage of using a comparative model, such as one that
uses triplet loss, is that we don’t need to specify how irrelevant a
sampled candidate is. Given the triplet (g;, ¢, c”), we only state

Lessons Learned Addressing Dataset Bias in Model-Based Candidate Generation at Twitter

that the negative candidate ¢~ is less relevant than the positive
candidate.

Qualitatively, models trained with triplet loss tend to perform
better. They are especially better at ranking relevant candidates
above only somewhat relevant ones.

To illustrate this we train a two-tower model using both triplet
loss and cross-entropy loss. In both cases we source positive candi-
dates, c;, from instances where a user followed a suggested account.
Negatives, cj, were randomly sampled at a rate of 4000 negative
candidates for every positive one.

We evaluate both models on a test set that uses implicit negatives.
The triplet loss model sees a 17% improvement in per user ROC-
AUC over the pointwise model.

5.3 Popularity Correction

For each positive (query, candidate) pair (g;, c;) in our dataset,
we will sample corresponding negative samples by sampling other
candidates cj according to some distribution. One option is uni-
formly sampling ¢ from C, where the probability of sampling any
candidate p(cy) = 1/|C|, and another is frequency weighting, where
we sample ¢ in proportion to its frequency in the served traffic.

The more popular a candidate is, the more it will appear in the
dataset as part of a positive pair. The popularity of candidates tends
to follow a power law distribution where most content is unpopular.
If we sample negatives with a uniform probability we are mostly
sampling unpopular content as negatives while using mostly pop-
ular content as positives. The model can take advantage of this
mismatch to achieve very high training performance by recom-
mending the same very popular content to everyone. However,
from a product standpoint, only recommending popular content
(recommending it only in proportion to popularity) is undesirable,
and could be achieved with a much simpler model.

Alternately, by sampling candidates in proportion to served traf-
fic logs (not the corpus) we are in effect sampling negatives in
proportion to a candidate’s popularity. Sampling popular candi-
dates as negatives leads the model to place much less importance
on popularity in its recommendations, which results in less popular
items being recommended. This approach is intuitively appealing,
but in this extreme form the engagement rates on its recommen-
dations tend to be much lower than on the more popular items
recommended by uniform sampling.

To trade off between uniform and frequency weighting in an
attempt to get the best of both worlds (we would like to recom-
mend less globally popular content without sacrificing too much
engagement), we sample negatives according to frequency and use
weighting to correct for the bias in sampling popular items. Doing
this allows us a degree of control between the two aforementioned
unacceptable states by varying the weighting.

To illustrate consider the following experiment. We train a two
tower model to recommend Twitter accounts to follow using deep
triplet loss. For a given user and context g, positive candidates
are sourced from suggested accounts she chooses to follow a*.
Negatives are created by sampling from every other account in
the batch a™. The resulting triplets (qx,a", a”) were weighed in
proportion to the popularity of a™. Popularity is measured here by
the number of users that follow the account § and we have found
this a reasonable proxy for frequency in the dataset.

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

The formula for the weights was 0.5 + 0.5¢%/t Note that this
bounds the weights between 0.5 and 1 which we found works well
in practice. Secondly, note that weight decays slower as ¢ increases.

Global ROC-AUC

0.595

0.594

0.593

0.592

0.591

|

Per-User ROC-AUC

0.549

0.548

0.547

0.546

!

Popular-R Pearson Correlation

0.06 o

0.05 o

0.04 o

0.03 H

|

Language Mismatch

0.460

0.458

0.456

0.454

0.452

i

0.450

T T T
2000 4000 6000 8000

o

Popularity Coefficient Paramater ()

Figure 6: Model metrics improve as we increase the weight-
ing of more popular items by increasing t. Metric definitions
described in Section 4.3.

Figure 6 shows how as we increase the popularity coefficient ¢
(which increases the weight on more popular items), more popular
accounts are getting recommended as evidenced by the Popular-
Recommendation Pearson Correlation going up. Simultaneously,
both AUC and language mismatch metrics improve.

However, this is unsatisfying, as if we simply maximize ¢, then
we would only recommend the most popular items, which we could
do with a much more simple heuristic than a two-tower network.
Indeed, all else equal, we have a product desire to recommend less
popular items since more-popular items are very likely to be already
generated by existing simple heuristic candidate generation sources.
We select t at the elbow where we achieve most of the gains in
AUC and language mismatch while still recommending relatively
unpopular accounts, which in Figure 6 would be around t = 2500.

5.4 Online Results

In some product surfaces a combination of all the above tech-
niques were enough to see performance gains over the production
system, such as on the "Notification Landing Page": in an online
A/B test, our candidate generation system saw a relative 10.87%
increase in engagement using all of the above techniques when
compared to the production candidate generation system, which re-
trieves candidates from similar authors. However, for other product

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

surfaces, such as the home timeline, these techniques alone were
not enough to see performance gains. In Section 6 we describe how
we were able to beat the production system by using fine-tuning.

6 Techniques Part 2: Fine-tuning

A problem with training a model using only randomly sampled
negatives is that the task is often too easy. A trained model will
learn broad decision boundaries such as language, regions, and
interest categories. For this reason, the retrieved candidates tend
to be only somewhat relevant to the user and most have r;; = 0
("relevant but not engaging").

Ideally, we want to make the retrieved candidates "relevant and
engaging". Doing so will make the task of the ranking phase easier,
and allow the ranker to learn finer-grained details about user be-
havior. Served data contains exactly the data relevant to this task:
almost no candidates served to the user are "extremely irrelevant”,
but the engaged candidates will be the most relevant.

Inspired by work done in transfer learning, we incorporate im-
plicit negatives into our model using fine-tuning. Transfer learning
is a popular technique in several domains and has been especially
successful in computer vision [21]. Chen et al. [5] use transfer
learning in the context of a socially aware recommender system by
transferring knowledge between the item and social domains.

Fine-tuning is a specific technique in transfer learning where a
network pre-trained on the source task is then trained on the target
task. In Howard et al. [11] they point out that aggressive fine-tuning
can cause catastrophic forgetting of the desired knowledge to be
transferred. To prevent this, various techniques such as freezing
hidden layers and modifying learning rates have been proposed. Our
fine-tuning techniques leverages many of the existing techniques
in this field.

In this case, we first train the model on sampled random nega-
tives, followed by fine-tuning this pre-trained model on implicit
negatives. The goal of this second task is to retain the pre-trained
model’s ability to discriminate broad decision boundaries (such as
language), while learning to discern between "relevant and engag-
ing" and "relevant but not engaging" content.

Pre-Training Dataset Fine-Tuning Dataset

Positives Positives

Engaged ltems Engaged ltems

Transfer
Negatives Negatives
Random Implicit
Samples Negatives

Figure 7: Fine tuning

6.1 Baseline Models

We compare a fine-tuning model against two baseline models.
One model is trained on implicit negatives from served data and
the other uses randomly sampled negatives. All three models are
trained for the home timeline using the setup described in Section 4.

Virani, A, Baxter,)., Shiebler, D.*, Gautier, P., Verma, S., Xia, Y., Sharma, A., Binnani, S., Chen, L., Yu, C.

6.1.1 Implicit Feedback Model In this model, if a user q; engaged
with candidate item c;, we set r;; to 1. If she did not engage with c;
at all we set r;; to 0.

Despite the noisiness of implicit negatives, the model performs
reasonably on the test set with a per-user ROC-AUC of 0.68 and
a global ROC-AUC of 0.89. Yet when we query this model, almost
all of the recommended Tweets are "extremely irrelevant", e.g. in a
different language than the user: for 76% of users, their top candidate
(the closest Tweet neighbor) was in a different language.

There are two important takeaways from this result. The first
is that a model trained on served traffic retrieves many "extremely
irrelevant” candidates. The second is that performance metrics
computed over served traffic alone are misleading. As such, it’s
important to evaluate the model in other ways such as qualitative
evaluation and using K-nearest neighbor based metrics.

Why is training on served data not enough? As mentioned in
Section 3, the underlying issue here is one of training-serving skew.
The model is being trained to discriminate on only those candidates
that are somewhat and very relevant. However, during inference,
the ANN compares the trained query embeddings against every
candidate embedding including very irrelevant ones. The issue here
is largely circular: We want to train a model to create a candidate
set from the corpus but we only have training data that has been
sourced from various candidate sets. The previous ranking systems
determine our training data.

6.1.2 Random Sampling Negative Examples In this model, as before,
if a user in a context q; engaged with candidate item c; we set r;; to
1. However, instead of using implicit negative feedback, we sample
a candidate ¢ from the dataset and set ry; to 0 for the pair gj, ck.

When queried, the model does a much better job retrieving
candidates that are relevant. For example, the percent of users
whose top candidate was in a different language dropped to 34%.

However, when evaluated on the test set from Section 6.1.1 with
implicit negatives, the model only achieved a ROC-AUC of 0.54 and
a per-user ROC-AUC of 0.55. This indicated the model performs
nearly randomly in its ability to discriminate what content would
be engaged out of the set of served candidates Cg.

These concerns are supported in an online A/B test. When com-
pared to the current production system the percentage of engaged
items (i.e. Tweets) fell by 5.5%. See Section 6.2.1 for more details.

6.2 Fine-tuned Model

This model fine-tunes the model trained in Section 6.1.2 (with
randomly sampled negatives) using the dataset outlined in Sec-
tion 6.1.1 (with implicit negatives). We leverage several of the exist-
ing techniques outlined at the beginning of this section.

Note that we use a learning rate that is one tenth of the pre-
trained model’s and only trained for a single epoch. Despite this,
the model had a ROC-AUC of 0.88 which is nearly identical to the
one trained in 6.1.1. The model saw 46% of top recommendations
being in another language which is both low enough to serve in
production and far lower than the 76% mismatch of the model in
Section 6.1.1. This provides further evidence that per-user ROC-
AUC is not reliable as a metric without also considering others such
as K-nearest neighbor metrics like language mismatch.

Lessons Learned Addressing Dataset Bias in Model-Based Candidate Generation at Twitter

Model ROC-AUC | Per-User ROC-AUC | (anguee
Implicit Negatives 0.678 0.885 0.76%
Random Negatives 0.547 0.545 0.34%

Fine-tuned 0.670 0.880 0.46%

Table 1: Offline performance on a test sourced from served
data.

Model Favorite | Retweet
Implicit Negatives N/A N/A
Random Negatives | -5.5% -12.5%

Fine-tuned +3.6 % +2.4%

Table 2: Online Performance: Relative change in engage-
ments rates. The quality of the model trained with only im-
plicit negatives was too poor to ship online and show to
users.

Online tests show a significant increase in performance over the
current production system: the percentage of favorited Tweets rose
by a relative 3.6%. See Section 6.2.1 for more details.

6.2.1 Experimental Results We test the three models presented in
this section: one trained on negatives sampled from served data
(Section 6.1.1), another trained on randomly sampled candidates
(Section 6.1.2), and finally one that is based on fine-tuning (Sec-
tion 6.2).

Table 1 shows the results of all three models on a dataset sampled
from served data using both global and per-user ROC-AUC. We also
include a K-nearest neighbors metric (Section 4.3.2) that tracks the
percentage of language mismatches in the top retrieved candidate.

Our results indicate that the fine-tuned model performs nearly as
well as the implicit model on the test set (indeed it was fine-tuned
on it), while maintaining nearly equal performance on language
metrics.

All of our live experiments have a similar setup. In the test group
we retrieve 200 Tweets from the ANN system using the model to be
tested. Those candidates are then ranked using a full ranking model.
The top ranked Tweets after the ranking phase replaced Tweets in
specific slots on the user’s timeline designated for recommended
Tweets, and the reported metrics consider only those recommended
Tweet slots.

Table 2 shows the results of our online A/B tests. Note that we
were not able to test the implicit model in a live experiment be-
cause the quality of the retrieved candidates are deemed too poor.
The fine-tuned model is able to statistically significantly improve
engagements (both favorites and Retweets) over the baseline pro-
duction candidate generators.

7 Conclusion

In this paper we presented the dataset bias problem that pre-
vented us from training a candidate generation model on served
data. We motivated the use of sampled random negatives and fine-
tuning on served data.

KDD IRS2020, Aug 23-28, 2020, San Diego, CA

We also presented several key insights that we have found helped
improve the quality of retrieved candidates: the importance of using
many random negative examples, using a comparative loss and
carefully choosing the sampling distribution.

8 Acknowledgements

We would like everyone at Twitter that collaborated with us in
the completion of this work. While naming everyone who helped us
is not practical, we would like to thank Stephen Ragain, Abhishek
Tayal, Yury Malkov, and Max Hansmire.

References

[1] Himan Abdollahpouri. Popularity bias in ranking and recommendation. In
Proceedings of the 2019 AAAI/ACM Conference on AL Ethics, and Society, AIES 19,
page 529-530, New York, NY, USA, 2019. Association for Computing Machinery.

[2] Martin Aumiiller, Erik Bernhardsson, and Alexander John Faithfull. Ann-
benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
CoRR, abs/1807.05614, 2018.

[3] Erik Bernhardsson. Annoy. https://github.com/spotify/annoy, 2019.

[4] Erik Brynjolfsson, Yu Hu, and Michael Smith. From niches to riches: The anatomy
of the long tail. MIT Sloan Management Review, 47, 07 2006.

[5] Chong Chen, Min Zhang, Chenyang Wang, Weizhi Ma, Minming Li, Yiqun Liu,
and Shaoping Ma. An efficient adaptive transfer neural network for social-aware
recommendation. In SIGIR’19, 2019.

[6] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H. Chi. Top-k off-policy correction for a REINFORCE recommender system.
CoRR, abs/1812.02353, 2018.

[7] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube

recommendations. In Proceedings of the 10th ACM Conference on Recommender

Systems, RecSys 16, page 191-198, New York, NY, USA, 2016. Association for

Computing Machinery.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and

context. Acm transactions on interactive intelligent systems (tiis), 5(4):19, 2016.

[9] Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. Neural collaborative filtering. CoRR, abs/1708.05031, 2017.

[10] Katja Hofmann, Anne Schuth, Alejandro Bellogin, and Maarten de Rijke. Effects
of position bias on click-based recommender evaluation. In ECIR, 2014.

[11] Jeremy Howard and Sebastian Ruder. Fine-tuned language models for text

classification. CoRR, abs/1801.06146, 2018.

Ray Jiang, Silvia Chiappa, Tor Lattimore, Andras Gyorgy, and Pushmeet Kohli.

Degenerate feedback loops in recommender systems. Proceedings of the 2019

AAAI/ACM Conference on Al Ethics, and Society - AIES ’19, 2019.

Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. Unbiased learning-

to-rank with biased feedback. CoRR, abs/1608.04468, 2016.

Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Li Zhang, Xinyang Yi, Lichan

Hong, Ed Chi, and John Anderson. Efficient training on very large corpora via

gramian estimation. In International Conference on Learning Representations,

2019.

Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate near-

est neighbor search using hierarchical navigable small world graphs. CoRR,

abs/1603.09320, 2016.

Hervé Jegou Matthijs Douze, Jeff Johnson. Faiss. https://engineering.fb.com/data-

infrastructure/faiss-a-library-for-efficient- similarity- search/, 2017.

Eli Pariser. The Filter Bubble: What the Internet Is Hiding from You. Penguin Group

, The, 2011.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified

embedding for face recognition and clustering. CoRR, abs/1503.03832, 2015.

[19] Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization:
Learning from logged bandit feedback. CoRR, abs/1502.02362, 2015.

[20] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee
Kumthekar, Zhe Zhao, Li Wei, and Ed Chi. Sampling-bias-corrected neural
modeling for large corpus item recommendations. In Proceedings of the 13th ACM
Conference on Recommender Systems, RecSys ’19, pages 269-277, New York, NY,
USA, 2019. ACM.

[21] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? CoRR, abs/1411.1792, 2014.

[8

[12

[13

(14

=
&

[16

[17

(18

https://github.com/spotify/annoy
https://engineering.fb.com/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dataset Bias
	2.2 Two-Tower Networks
	2.3 Approximate Nearest Neighbor Search

	3 Problem Description
	3.1 Served Traffic
	3.2 Explicit and Implicit Feedback
	3.3 Sampled Negatives
	3.4 Demonstration of Bias on MovieLens

	4 Experimental Setup
	4.1 Product Surfaces
	4.2 Two Tower Networks
	4.3 Model Evaluation

	5 Techniques Part 1: Sampled Negatives
	5.1 Sampling Ratio
	5.2 Deep Triplet Loss
	5.3 Popularity Correction
	5.4 Online Results

	6 Techniques Part 2: Fine-tuning
	6.1 Baseline Models
	6.2 Fine-tuned Model

	7 Conclusion
	8 Acknowledgements
	References

