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Figure 1: Merlin Recommender System Framework

ABSTRACT
The scale of recommender system datasets in industry has grown to
the point where special thought must be taken in both the prepara-
tion of the data and in the training methods used in order to avoid
performance issues that can slow down the total training iteration
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time by orders of magnitude. Extract Transform Load (ETL) and
data preparation can take more time than training, leading to the
adage that data scientists spend >75% of their time preparing data
for modelling. These large datasets are required in order to enable
deep learning (DL) based recommender systems which outperform
traditional methods in industry settings where small differences in
model performance can have a significant impact on the bottom
line. Similarly, training DL recommenders whose embeddings scale
beyond a single GPU requires significant expertise to implement
efficiently.

In this paper we present Merlin, an open source Graphics Pro-
cessing Unit (GPU) accelerated recommendation framework that
scales to datasets and user/item combinations of arbitrary size. The
framework provides fast feature engineering and preprocessing for
operators common to recommendation datasets and high training
throughput of several canonical deep learning based recommender
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models including Wide and Deep[3], Deep Cross Networks[14],
DeepFM[6], and DLRM[8] to enable fast experimentation and pro-
duction retraining. For production deployment Merlin also provides
low latency, high-throughput inference. These components com-
bine to provide an end to end framework for training and deploying
deep learning recommender system models on the GPU that is both
easy to use and highly performant. The Merlin framework is freely
available and open source[10, 11].

CCS CONCEPTS
• Information systems → Recommender systems; Content
analysis and feature selection; • Computer systems organiza-
tion → Single instruction, multiple data.
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1 INTRODUCTION
Building recommender systems in industry is a complex process
of data collection, data preparation and transformation, modelling,
and production deployment. Each of these tasks requires significant
knowledge and understanding to achieve both a high quality of
recommendation and good performance when it comes to the total
iteration time of training. Even amongst organizations with signifi-
cant engineering and data science teams dedicated to each stage
of the process, interaction between the different stages can play a
major role in the time it takes to optimize feature engineering and
training and to deploy a model into production.

In the initial experimentation phase, Extract-Transform-Load
(ETL) operations prepare and export datasets for training, usually in
the form of tabular data that can reach hundreds of TBs in scale. An
example public dataset of this type is the Criteo Terabyte click logs
dataset[4], which contains click logs of four billion interactions over
a period of 24 days. Industry datasets can be orders of magnitude
larger. During experimentation, data scientists and machine learn-
ing engineers use feature engineering, which creates new features
by transforming existing ones, and preprocessing, which prepares
the engineered features for consumption by the model, to transform
the dataset into something ready for training. Training is then per-
formed using DL frameworks such as TensorFlow[1], PyTorch[9],
or our recommender specific training framework, HugeCTR[10].
For many companies this experimentation never ends, with mod-
els continually being updated and new features added to improve
performance over time.

Once the models have been trained and evaluated offline, they
can be moved into production for online evaluation, typically
through A/B testing. The recommender system inference process
involves selecting and ranking candidate items by the predicted

probability that the user will interact with them. Selection of a
subset of items is necessary for most commercial applications, with
millions of items to choose from. The selection method is typically
a highly efficient algorithm such as approximate nearest neighbors,
random forest, or filtering based on user preferences and business
rules. The DL recommender model then re-ranks the candidates
and those with the highest predicted probability are presented to
the user.

There are many challenges when training large-scale recom-
mender systems:

• Huge datasets: Commercial recommender systems are
trained on large datasets, often terabytes or more. At this
scale, data ETL and preprocessing steps often take much
more time than training the DL model.

• Complex preprocessing and feature engineering pipelines:
Datasets need to be preprocessed and transformed into a
suitable form to be used with DL models and frameworks.
Feature engineering requires iteration and exploration and
code complexity can be a significant challenge, particularly
when moving a pipeline into production.

• Inefficient dataloading: For many models dataloading during
training is a input bottleneck, leading to GPU underutiliza-
tion. Increasing the batch size can help in that context but
must be done carefully to avoid impacting the quality of
recommendations.

• Extensive repeated experimentation: The whole data ETL,
feature engineering, training and evaluation process must
be repeated many times, potentially on many model archi-
tectures, requiring significant computational resources and
time. Even after being deployed, recommender systems also
require periodic retraining to account for new users, items
and recent trends in order to maintain high accuracy over
time. Lowering total iteration time is key to effective recom-
mender system deployments.

• Huge embedding tables: Embedding is a universally em-
ployed technique to handle categorical variables, for both
users and items as well as their associated side information.
On large commercial systems, the user and item base can eas-
ily reach an order of hundreds of millions, requiring a large
amount of memory compared to other types of DL layers.
Unlike other DL operations, embedding lookup is memory
bandwidth constrained. While the CPU generally offers a
larger memory pool, it has much lower memory bandwidth
and compute when compared to a GPU.

• Distributed training: Distributed training is continually
setting new records in training DL models in the vision
and natural language domains, as reflected by the MLPerf
benchmark[7]. This concept is a still relatively new in rec-
ommender systems where the user and item embeddings
that dominate these models can exceed GPU memory by or-
ders of magnitude. Distributed training requires both model
parallelism and data parallelism, making it hard to achieve
high scale-out efficiency.

Even when training challenges have been overcome, the de-
ployment of deep learning based recommenders to a production
setting bring new issues that must also be resolved. Some notable
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challenges for deploying large-scale recommendation systems in
production include:

• Real-time inference: For each query, the number of user-
item pairs to score can be as large as a few thousand after
candidate generation. The inference server must support
high throughput and low latency to serve many users con-
currently and meet the Service Level Agreement (SLA) re-
quirements necessary in order to provide a positive user
experience.

• Monitoring and retraining: Recommender systems operate
in continuously changing environments: new users regis-
tering, new items becoming available, and emerging trends.
To remain effective recommender systems need ongoing
monitoring and retraining to ensure that recommendation
quality doesn’t decline. The inference server must also be
able to concurrently deploy different versions of a model,
and load/unload models on the fly to facilitate A/B testing
or other evaluation methods.

These scale and diversity of these challenges make the training
and deployment of deep learning based recommender systems into
production the domain of large companies with big engineering
teams who are able to overcome them. The benefit of deploying
these large scale deep learning recommender systems is significant
enough to warrant the effort, but this still remains a barrier to the
small and even mid sized companies who would like to explore
deep learning based recommendation.

The Merlin recommender system framework is an attempt to
provide solutions and structure in the recommender system space.
Its focus is on ease of use for each component library, simple inter-
operability between components, and acceleration on the GPU, scal-
ing easily to multi-GPU and multi-Node solutions when required.
Component libraries are also interoperable with other common
frameworks and tools in the deep learning ecosystem for maximum
flexibility in production settings where existing solutions require
integration, allowing users of the framework to pick and chose the
components that work best for them. In the next section we will
introduce the Merlin framework and its component libraries.

2 MERLIN: A GPU ACCELERATED
RECOMMENDATION FRAMEWORK

Merlin is an application framework and ecosystem created to facili-
tate all phases of recommender system development, from experi-
mentation to production, accelerated on GPUs. Figure 1 shows an
architectural diagram of Merlin, and its three core components are
described below.

NVTabular: A collection of operators for high-speed, on-GPU
preprocessing and feature engineering of tabular data with the
capability of scaling to handle terabyte-scale datasets. The output
of NVTabular[11] can be made available to a training framework
such asHugeCTR, PyTorch, or TensorFlow at high throughput using
NVTabular dataloader extensions, eliminating the input bottleneck
commonly found in GPU recommender system training.

HugeCTR: HugeCTR is a highly efficient C++ recommender
system dedicated training framework. It features multi-GPU and
multi-node training, and supports model-parallel and data-parallel
scaling, allowing users to implement embeddings that scale across

multiple GPUs to utilize the entire memory space. HugeCTR covers
common and recent recommender system architectures such as
Wide and Deep (W&D), Deep Cross Network, and DeepFM, with
Deep Learning Recommender Model (DLRM) support coming soon.

Triton Inference Server: Built using TensorRT[12], an SDK
for high performance deep learning inference, Triton Inference
Server[13] includes a DL inference optimizer and runtime that
delivers low latency and high throughput. Triton provides a com-
prehensive, GPU-optimized inferencing solution, allowing models
from a variety of backends to be served including HugeCTR, Py-
Torch, TensorFlow, TensorRT, and Open Neural Network Exchange
(ONNX) runtime[2]. Triton Inference Server automatically manages
and makes use of all the available GPUs and offers capability to
serve multiple versions of a model and report various performance
metrics, allowing for effective model monitoring and A/B testing.

In the next sections, we explore each of these components in
detail.

3 NVTABULAR: FAST FEATURE
ENGINEERING, PREPROCESSING AND
DATALOADING

The time taken to perform feature engineering and preprocessing
of recommender system datasets often exceeds the time it takes
to train the model itself. As a concrete example, processing the
Criteo Terabyte Click Logs dataset takes 5.5 days to complete using
the original NumPy script, while training DLRM on the processed
dataset takes less than an hour on a single NVIDIA V100 GPU.

NVTabular is a feature engineering and preprocessing library,
designed to quickly and easily manipulate terabyte-scale datasets.
It is especially suitable for recommender systems, which require a
scalable way to process additional information, such as user and
item metadata or contextual information. It provides a high-level
abstraction to simplify code and accelerates computation on the
GPU using the RAPIDS cuDF library. Using NVTabular, with just
10-20 lines of high-level API code, you can set up a data engineering
pipeline and achieve up to 10X speedup compared to optimized
CPU-based approaches while experiencing no dataset size limita-
tions, regardless of the GPU/CPU memory capacity.

The total time taken to do ETL is a mix of the time to run the
code, but also the time taken to write it. The RAPIDS team has done
amazing work accelerating the Python data science ecosystem on
GPU, providing acceleration through cuDF, Apache Spark 3.0[15],
and Dask-cuDF[5]. NVTabular uses those accelerations but provides
a higher-level API focused on recommender systems, which greatly
simplifies code complexity while still providing the same level of
performance. Figure 2 shows the positioning of NVTabular relative
to other dataframe libraries.

The preprocessing workflow required to transform the 1-TB
Criteo Ads dataset can be implemented with just 12 lines of code
using NVTabular. Numerical and categorical columns are specified
explicitly. An NVTabular workflow is defined and supplied with a
set of train and validation files. Then, preprocessing operations are
added to the workflow and data is persisted to disk. In comparison,
custom-built processing codes, such as the NumPy-based data util
in Facebook’s DLRM implementation, can have 500-1000 lines of
code for the same pipeline.
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Figure 2: NVTabular positioning compared to other popular
dataframe libraries

Figure 3 shows the relative performance of NVTabular to the
original DLRM preprocessing script, and a Spark-optimized ETL
process running on a single node cluster. Of note is the percentage
of time taken up by training compared to the time taken in ETL.
In the baseline cases, the ratio of ETL to training almost exactly
matches the common adage that data scientists spend 75% of their
time processing the data. With NVTabular, that relationship is
flipped.

Figure 3: NVTabular Criteo comparison. GPU (Tesla V100 32
GB) vs. CPU (AWS r5d.24xl, 96 cores, 768 GB RAM)

The total time taken to process the dataset and train the model
on a CPU is over a week using the original script. With significant
effort, that can be reduced to four hours using Spark for ETL and
training on a GPU. With NVTabular and HugeCTR, which we cover
later in this post, you can accelerate iteration time to 40 minutes
for a single GPU and 18 minutes on a DGX-1 cluster. In the latter
case, the four-billion interaction dataset is processed in only three
minutes.

4 HUGECTR: A RECOMMENDATION
SPECIFIC TRAINING FRAMEWORK

HugeCTR is a highly efficient GPU framework designed for rec-
ommender model training, which targets both high performance
and ease of use. It supports simple MLP models and also more so-
phisticated hybrid models such as W&D, Deep Cross Network, and
DeepFM. We are also working on enabling DLRM with HugeCTR.
The model details and hyperparameters can be specified easily in
JSON format, allowing for quick selection from a range of common
models.

Compared to other generic DL frameworks such as PyTorch and
TensorFlow, HugeCTR is designed specifically to accelerate end to
end training performance of large scale CTR models. Unlike the
generic frameworks it explicitly prevents users from developing
their model in a way that isn’t optimal, constraining to optimal
layer width and memory sizes in order to achieve significant per-
formance benefits. To prevent data loading from becoming a major
bottleneck in training, it implements a dedicated data reader which
is inherently asynchronous and multi-threaded, so that the data
transfer time overlaps with the GPU computation.

Figure 4: HugeCTRmodel and data parallelism architecture.

The embedding table in HugeCTR is model-parallel and dis-
tributed across all the GPUs in a cluster, which consists of multiple
nodes and multiple GPUs. The dense component of these models is
data-parallel, with one copy on each GPU (Figure 4). For high-speed
and scalable inter and intra-node communication, HugeCTR uses
NCCL. For cases where there are many input features, the HugeCTR
embedding table can be segmented into multiple slots. The features
that belong to the same slot are converted to the corresponding
embedding vectors independently, and then reduced to a single
embedding vector. It allows you to efficiently reduce the number of
effective features within each slot to a manageable degree.

Figure 5 shows the training performance of a W&D network
with HugeCTR on a single V100 GPU on the Criteo Terabyte Click
Ads dataset, compared to TensorFlow on the same GPU and a dual
20-core Intel Xeon CPU E5-2698 v4. HugeCTR achieves a speedup
of up to 54X over TensorFlow CPU, and 4X that of TensorFlow
GPU. To reproduce the result, the Wide and Deep sample, including
the instructions and the JSON model config file, is provided in the
HugeCTR repo[10].

Figure 6 shows the strong scaling results of HugeCTR with a
deeper W&D model on a DGX-1 for both the full-precision mode
(FP32) and mixed-precision mode (FP16).
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Figure 5: TensorFlow v2.0 CPU and GPU performance in
comparison with HugeCTR v2.1 on a single V100 16-GB
GPU. CPU: Dual 20-core Intel(R) Xeon(R) CPU E5-2698 v4@
2.20GHz (80 threads). Model: W&D, 2x1024 FC layers. Bars
represent speedup factor vs. TensorFlow CPU. The higher,
the better. Numbers in parentheses denote average time
taken for one iteration.

Figure 6: HugeCTR strong scaling results on 8X V100 16-GB
GPU. Batch size: 16384. Model: W&D, 7x1024 FC layers.

5 TENSORRT & TRITON INFERENCE SERVER
TensorRT is an SDK for high performance DL inference which
includes a DL inference optimizer and runtime that delivers low
latency and high throughput for inference applications. TensorRT
can accept trained neural networks from all DL frameworks using
a common interface, the open neural network exchange format
(ONNX). It automatically optimizes the network architecture using
operations such as vertical and horizontal layer fusion and reduced
precision operations (FP16, INT8) that leverage the high mixed-
precision arithmetic throughput of the Tensor Cores on NVIDIA
GPUs. TensorRT also automatically selects the best kernel based
on the task at hand and the target GPU architecture. For further
model-specific optimization, TensorRT is highly programmable and
extensible, allowing you to insert your own plugin layers.

Triton Inference Server builds upon this SDK to provide a cloud-
inferencing solution optimized for NVIDIA GPUs. The server pro-
vides an inference service via an HTTP or gRPC endpoint, allowing
remote clients to request inferencing for any model being managed
by the server. Triton Server can serve DL recommender models us-
ing several backends, including TensorFlow, PyTorch (TorchScript),
ONNX runtime, and TensorRT runtime. With DLRM, we show how
to deploy a pretrained PyTorch model with Triton, achieving a 9X
reduction in latency on an A100 GPU compared to CPU, as shown
in Figure 7.

Figure 7: DLRM inferencewith Triton Inference Server. Bars
represent the speedup factor for GPU vs. CPU. Batch size
2048. CPU: Dual Intel(R) Xeon(R) Platinum 8168 @2.7 GHz
(96 threads). GPU: Tesla A100 40 GB. The higher, the better.

Triton contains optimizations specifically targeted at recom-
mender systems. As an example the W&D model was upgraded
by implementing a fused embedding lookup kernel to leverage the
GPU high-memory bandwidth. Running in the Triton Server cus-
tom backend, the GPU W&D TensorRT inference pipeline provides
up to 18X reduction in latency and 17.6X improvement in through-
put compared to an equivalent CPU inference pipeline. All this
is deployed using Triton Inference Server to provide production
quality metrics and to ensure production robustness.

6 CONCLUSION
In this paper we present Merlin, an accelerated recommendation
framework that scales on the GPU to datasets of arbitrary size. The
framework provides fast feature engineering and preprocessing for
operators common to recommendation datasets and high through-
put training of several canonical deep learning based recommender
models. It has been designed to enable fast experimentation and pro-
duction retraining. For production deployment Merlin also provides
low latency, high-throughput inference.

The three components of Merlin: NVTabular[11], HugeCTR[10],
and Triton Inference Server[13], are open source and freely avail-
able. Together these components combine to provide an end to end
framework for training and deploying deep learning recommender
systemmodels on the GPU that is both easy to use and highly perfor-
mant. The framework is actively under development and welcomes
issues and feature requests to help guide future development.
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