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ABSTRACT

In recent years, deep neural networks have not only made an en-
trance but have flourished in the field of recommendation systems
following their immense popularity in speech recognition, natural
language processing and computer vision. While this holds true
in the context of traditional recommendation problems with static,
homogeneous inventory and also in the context of pure news-based
recommendation, the industry at large is perpetually pursuing scal-
able, economical and tailor-made solutions for unique problems.
In this paper, we discuss one such deep-learning based solution
to the problem of recommending heterogeneous content, in that
the content may vary based on factors such as lifetime, format
and language. The proposed system generates a multi-modal fea-
ture space for representing and learning user-content relationship,
taking its inspiration from the setting of traditional collaborative
filtering algorithms. With an aim to focus on implementation and
industry-based applications, we also address the problem of serv-
ing DNN-based model predictions in live environment efficiently.
To that end, we share our system design and learnings that have
yielded 15x throughput improvement while making 150K predic-
tions per core per second. The performance of this system in live
environment is encouraging, with improvements of 2.3% and 8.1%
in click-through rate (CTR) and total duration respectively as com-
pared to the existing system.

1 INTRODUCTION

Internet coverage has witnessed staggering growth in the past
decade with more than half of the world’s population now online.
This growth has caused a surge in creation, consumption and va-
riety of content. Advancements in the fields of neural machine
translation, speech recognition and natural language processing
have helped on-board diverse groups of first time internet users
from developing countries. Most of these users prefer consuming
content in their respective vernacular languages while adopting the
internet as their new source for content consumption. Personaliza-
tion of users’ content feeds thus becomes inevitable when we try to
solve this problem of information overload for a diverse target au-
dience. It helps in improving user experience which is instrumental
in increasing overall product engagement.
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Glance! is a content discovery platform with a current reach of
100Mn daily active users (DAU). In order to cater to wide-ranging
interests of these users, content on Glance is varied in terms of
lifetime - ephemeral or timeless, format - article or video, mode -
image or text, and language - English, Hindi and Bahasa among
others.

Figure 1: A preview of Glance: As can be seen, a glance card
consists of Image & Text with an embedded call-to-action
(CTA)

The context of this paper, although inspired from our work at
Glance, can be generalized as building a recommendation engine
which addresses a combination of following challenges:

o Ephemeral item inventory: Frequently changing, low lifetime
content

e Multi-modal content: Content varying in format and lan-
guage

!Glance: https://glance.com.
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e Recommendation at scale: Model and serving architecture
capable of serving millions of users

After considering various approaches in existing literature, which
we cover in detail in the Related Work section, we noticed that they
solved only a subset of the challenges highlighted above. The need
for a more generalised approach to address our additional require-
ments and our efforts in the said direction led to the work in this
paper. Firstly, the usage of traditional collaborative filtering meth-
ods was ruled out due to the ephemeral nature of the content along
with the vast user base which made model training difficult. Sec-
ondly, while news recommendation systems solve the problem for
ever- changing content they do so by considering single modality of
content which is not the case at Glance. Lastly, click-through-rate
prediction models in several contexts require static user based meta
information like demographics and location which is not available
in our case owing to our philosophy of having a stateless user ex-
perience. In this paper, we propose a deep learning based solution
to build a model that can leverage the effectiveness of collaborative
filtering while simultaneously scoring newly generated content. In
our endeavour to emphasize on execution and focus on industry
based applications, we also present the lessons we learnt while
taking a DNN-based model to production in System Deployment
Section.

The core of our approach is:

e A Multi-Modal Encoder that produces domain-specific text
embeddings by making use of a BERT model we fine-tuned
for our use case. Fine tuning BERT for domain specific use
cases is discussed in Our Approach section.

o A neural network architecture called FM-Lite that combines
cross-domain user interests and item features jointly opti-
mizing user’s prediction behavior

e A system architecture that meets strict service level agree-
ment (SLA) requirements by using a distributed prediction
service powered by caching and optimized operations to
deploy neural network models in real world

In Dataset & Results section, we present offline performance
metrics in comparison to other well-known neural network based
architectures, followed by our model’s performance on live traffic.

2 RELATED WORK

Traditional recommendation algorithms are broadly divided into
three categories: Collaborative Filtering [1],[2],[3], Content Filter-
ing [4],[5],[6] and Hybrid [7],[8]. While content filtering aims to
build user and item portraits based on explicit item attributes, col-
laborative filtering works without any prior information about an
individual user or item. The latter uses interaction data of all users
and items in the defined world to derive intrinsic patterns in inter-
ests. It helps discover new interests of a user that might fall outside
the subspace defined by their historical interactions. In recent years,
collaborative filtering via matrix factorization has become the de-
fault choice to build recommendation systems [1],[3],[9]. However,
it is seen to perform well when you have enough interactions,
which are harder to come by in ever-changing content. Content fil-
tering on the other hand tends to be more robust against popularity
bias and the cold start problem but limits the scope of recommen-
dation owing to its high dependency on explicit item attributes.

When run for too long, pure content filtering based approach causes
user fatigue due to predictable recommendations. Hybrid filtering
combines content and collaborative filtering, to capitalize on the
benefits and curtail the disadvantages of these two approaches.

Considering the ever changing, quickly expiring nature of our
content, we took to news recommendation use cases for initial
inspiration. Content filtering and Collaborative filtering are usu-
ally combined to build models that make sense of user interactions
[10],[11], [12] & [13]. As mentioned above, regular collaborative
filtering methods fail to deliver with cold items and limited interac-
tions. Okura et al. [13] solved this using an auto-encoder to build
item embeddings for every article based on the word statistics in
the documents. The embeddings of items that constitute a user’s
historical preferences are then fed to a Recurrent Neural Network
(RNN) to obtain that user’s embedding. Because of ephemeral na-
ture, hybrid filtering techniques have also been employed to build
recommendation systems for news content. Moerland et al. [14] use
semantic similarity instead of Bag-of-Words (BOW) to rank items.

With neural networks adoption accelerated by GPUs, more and
more organizations have started experimenting with neural nets
in the field of recommendations. Currently, most companies such
as Netflix [15], Airbnb [16], MSN [17] are using neural nets to
power their recommendation systems. He et al. [18] used neural
nets to introduce non-linearity in collaborative filtering via two-
way interactions called Neural Collaborative filtering (NCF). Few
works such as Efficient Extreme Classification by YouTube [19] and
Wide and Deep [20] by Google use neural network models to treat
recommendation as a classification problem. In Wide and Deep
[20], Cheng et al. combine a wide network with a deep channel
using a multi-layer perceptron. The former is used to memorize
interactions while the latter models more complex interactions
effectively.

We also came across literature that addresses multi-modality. In
their work, Elkahky et al. [21], make use of a multi-view deep neural
network architecture in order to understand users’ interests more
comprehensively. A user’s interests sourced from different domains
are jointly mapped to a semantically richer user latent feature vector
that is more compact. By doing so, in addition to getting a richer
user embedding, they also improve recommendation quality across
involved domains.

3 PROBLEM FORMULATION

On Glance, a user interacts with a content card (called a glance
card) by clicking on it, referred to as a ‘peeking’ action on the lock
screen. While the content of a glance card can vary from news to
featured content in multiple languages and categories, the format
of this card can be image or video based with some text embedded
in either case for title and summary. Based on lifespan, glance cards
can be positioned in a wide spectrum ranging from ephemeral to
perennial, with the majority expiring within 48 hours. A glance
card, as can be seen in Figure 1, has multiple components like an
image, title text, summary text and a call-to-action button (play
button in case of videos).

To define the problem we define our interaction data as X, where
each x € X, has (u, g,y,d), where u and g are user and glance pair,
with y being a binary variable with value 1 or 0, if there is a peek or



no peek respectively and d being the time spent on a glance card by
the user. The pair u and g are part of set of users U with |U| = n and
a set of items (glance cards) which the user has interacted in past
G with |G| = m. We formulate the problem by getting a probability
of click, for a given user and glance and ranking them according to
the probability.

p(y=1ug) = f(ug) 1)
The challenge with solving this problem lies with the short shelf
life (expires in hours) of glances, comprehending the context of
the text & image, multi-modal content (text and images) in the
glance card and the absence of static user features (like demographic
information, user social connections etc)

Furthermore, on the serving side, we had to come up with a
system that could cater to user requests with predictions while
honouring the latency limits (up to 50ms) and high traffic (with
traffic at peak hours surging up to 1.2M prediction requests per
second) so that the user experience is not compromised.

4 OUR APPROACH

We solved the problem by dividing the model into 3 parts, Multi-
Modal Encoder or Glance Encoder, User Encoder and the Prediction
Model. Multi-Modal Encoder or Glance Encoder encodes each glance
to an embedding. Since the glance-card is short-lived in nature,
we rely totally on the content (text, image, and meta-information)
to get the embedding. User Encoder uses the glance embedding of
all glances interacted by the user, and creates an embedding for a
user from historical interactions (28 days) of the user. Finally, the
Prediction Model predicts the probability of a user peeking a glance,
given their embedding obtained from the respective encoders.

4.1 Multi-Modal Encoder

Multi-Modal Encoder or Glance Encoder has three main components,
Meta Features Encoder, Image Encoder, and Text Encoder. Glance
Embedding has all the set of features for the item, which, in our
case, is a glance card. To represent these features for the glance, we
treat various features based on how accurately they represent the
Glance’s theme. We append the embedding from three encoders
viz - text, image and meta-features to obtain the glance embedding.

4.1.1 Text Encoder. In recent years we have seen many advance-
ments in the field of Natural language processing (NLP) to represent
words/sentences in the form of embedding. For our use case we rep-
resented the text into a continuous space by evaluating various ex-
isting methods in our downstream task, we explored Word2Vec[22],
Universal Sentence Encoder (USE) [23] and BERT[24]. From our
experiments mentioned in Table 1 we found that although the avail-
able sentence embedding perform well for standard tasks, they did
not perform well for our task. The short and direct nature of text
in Glance from a diverse set of categories required us to fine tune
to improve the feature representation and thus performance.

BERT: Bidirectional Encoder Representations from Transformers
[24] is a deep bidirectional model that is pre-trained in a semi super-
vised fashion for a masked language model task and next sentence
prediction task, conditioning on both the left and the right context
of the text in all layers. The pre-trained model can be fine-tuned to
most of the language tasks and create state of art models.

e Masked Language Model: In this task, authors mask a frac-
tion of the input tokens randomly, and then predict the
masked tokens.

o Next Sentence Prediction: In this task two sentences, namely
A and B are provided as input to the model. 50% of the time
sentence B is made the next sentence for A while the other
time there is a random allotment. Finally the CLS [24] token’s
output is taken as the label for the next sentence.

Fine-Tuning BERT. Fine-Tuning BERT? is a method that yields
better results for downstream and domain specific tasks, as shown
by Sun et al. [25] Lee et al. [26] & Beltagy et al [27].

Softmax - Classifier
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(u, v, lv-ul)
u \
Embedding Embedding
A A
Pooling Pooling
A A
BERT BERT
title (t) summary (s)

Figure 2: Framework for fine-tuning the BERT embedding
for glance’s data. The title (t) & summary (s) are passed as
the input, which transforms to u & v before passing it to loss
and then a softmax layer.

We first pre-process and translate all the non English text to
English text using Neural Machine Translation (NMT) [28]. We
decided to translate the non-English text to English due to the
lack of a pre-trained BERT on non-English indic languages such as
Tamil, Telugu and Kannada. Post this, to improve the quality of the
textual embedding that we use as a feature in our recommendation
models, we fine-tuned the BERT base model on our own glance
dataset [29]. We followed the work done by Reimers et al [30],
which uses a Siamese Network Structure [31] to fine-tune the BERT
model. The fine-tuning architecture as shown in Figure 2 follows
the presence of a pooling layer on top of the BERT model, followed
by a loss function which in our case was mean absolute error and
then a softmax function. The final hyper-parameters found after
experimentation were that of batch size 16 with Adam optimizer
and a learning rate of 2e> along with a linear learning rate warm
up over 15% of the data. The pooling logic we used was Mean

2Github Source Code: https://github.com/vishesh60/bert_finetuning.
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Pooling with a training set of 40K sentence pairs which was fixed
after checking the relation between loss and the number of sentence
pairs as seen in Figure 3.
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Figure 3: Relation between loss and number of training data
examples for BERT finetuning

We concatenate the sentence embeddings u and v, (obtained by
passing title (t) and summary (s) through BERT and pooling as
shown in Figure 2) with the element-wise difference |v - u| and
multiply it with the trainable weight W as shown below:

P(y=1lu, v) =a(W(u, v, |v-ul) @

We use Glance text data to train and validate the model. To avoid
manual tagging of the dataset for fine-tuning, we followed a format
wherein a title (t) and summary (s) of a particular glance was
marked with a supervised label 1, while for label 0 we picked glances
from different categories to ensure true negatives. We did this
as within the same category, there were chances of two glances
having higher semantic similarity which can lead to introduction of
false negatives in the training dataset. We evaluate using 3 pooling
strategies: mean-pool of all the output vectors, max-pool of all the
output vectors, and output of the [CLS] token.

Table 1: Offline Experimentation of various embeddings
and BERT fine-tuning with different pooling strategies with
their log loss

Embedding Before Finetuning  After Finetuning
Word2Vec [22] 0.477 -
USE [23] 0.328 -
BERT Base mean 0.446 0.315
BERT Base cls 0.457 0.263
BERT Base max 0.599 0.298

The BERT Base fine-tuned model with the pooling from CLS
token is chosen for creating the embedding as it performs the best
in our downstream task Table 1. We use this method to generate
the text embeddings by appending the title and summary, gry.

4.1.2  Image Encoder. To create the image features for the glance,
we bring it into the same semantic space as the text features, so that
we can jointly optimize for the different characteristics such as the
Text/Image available per glance. To create the image embedding
we utilized the Neural Image Caption Generation model by Xu et al
[32]. The caption also aids in capturing the aesthetics and abstract
nature of the images (Example: an article about a stack of notes in
a business news). The generated caption is then passed through the
Text Encoder module to generate the embedding gi.

4.1.3  Meta-Features Encoder. Meta Features such as the language,
modality, type of the item, dominant colors, tags etc. are one-hot
encoded and appended to form the meta feature embedding gpr.

So,gi VG we have a gf = [gﬁwF ng giTF] (3)

4.2 User Encoder

User Encoder, encodes every user to an embedding space, based on
their historical interactions with the glances. It uses the content
(text and image) of all the peeked glances along with their affinity
towards each of the meta feature of the glance to get a unique
embedding such that users with similar interest come closer in
the embedding space and the users with dissimilar interests will
be farther away. Since we have stateless system i.e. there are no
static user information, we generate all the user features from 3
sections. We divide the user encoder into 3 different sections which
are finally appended together to get a user embedding.

4.2.1 Text & Image Embedding (urp,urr). We use the Text Em-
bedding (grF) of all glances from the user’s positive interaction
history (i.e. interaction with a peek) and pass them through a mean
pooling to get the User’s Text Embedding.

Similarly, we use the Image Embedding (grr) of all glances from
the user’s positive interaction history (i.e. interaction with a peek)
and pass them through a mean pooling to get the User’s Image
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Figure 4: Building the User Meta Feature Embedding: Using
the historical data of a user, we build a set of user-features
that gives the user peek-rates

4.2.2 Meta-features Embedding (upr). We use the meta-feature
embedding of all the glances the user interacted with, to build
the user interest profile as shown in Figure 4. The meta features
for users are obtained by passing the positive interactions to the
mean pooling layer, normalizing each one of the pooled values with
the output from the mean pooling from all the interactions. This



P Mean Pooiing

Normalised
Mean Pooling

W

90.708 0. 08 €0..700
€00..000 ©00..008 ©00...000
o [
© 0 90 15} 90 00
66 661 ¢ S6 66
00 00 o 00 00
o0 o0 [} o0 [eNe}
[ N [N ) [ ] L N J [ N J
User Peeked User Peek
Embaddrscrot) Glance Non-Peck
9 Embedding(Text) Meta-Features
History by

User Encoder Glance Encoder User Encoder

@00 --

Glance
Meta-
Features

S W

Glance Encoder

Output
Layer

Simalarity &
Interaction layers

< un Qu >
u Qw

€0 .0e 0 O.

|
}

000..000

®00... OO.

User Peeked
Embeddings(Image)
History

Glance
Embedding
(Image)

(S W

User Encoder Glance Encoder

Figure 5: FM-Lite Architecture. Historical interactions (peeked and non-peeked) of
glances are pre-processed to obtain the User and Glance Features using User and Glance

Encoder.

normalization is equivalent to user’s peeking rate for the given
categorical feature value.

These features built from the user’s past history of peek and
non-peek, forms the core set of features that defines the interest of
a user for specific type of content like the interest of user towards a
specific language, or modality like article or video, or category like
sports, food,.. and likewise for other set of features. This embedding
maps each user into a meta-feature space, where each value in the
embedding represents the user’s peek-rate(interest) for that meta-
feature, hence giving each user a unique embedding altogether.

Point to be noted is users with similar peeking history might have
similar text and image embedding, but they might have different
user embeddings since their meta-features embedding is not similar
as it considers both peek and non-peek history.

So,u; Y U we have a uf = [u?/IF ufF ul-TF] (4)

4.3 FM-Lite

We get the embedding for a user i and glance j as uf from the User
Encoder and gF from the Glance Encoder and every such pair has a
label y = 0 or 1, (where y = 1 means a peek and y = 0, otherwise)
coming from the training data of interactions. We train the model
(f) on user embedding and item embedding for all such pairs to
predict the probability of user clicking on the item.

P(y = 1luj,g) = f(u].g)) )

To predict this probability, we use a multiple input single output
architecture as shown in Figure 5, where we provide the various
types of inputs to the model separately and train all the different
sections in a joint fashion. The input sections takes the different

types of inputs separately viz the text (uTF TF)

and other meta features (uMF, gMF

image (u%F, g}F)
). All these three inputs are first
reduced to a lower dimension ((au IFy (@MF afgWF ) & (alF agF )
using dense layers. This brings input (user and item) to a common
feature space and also aids in reducing latency of the system as
seen in Table 2, the parameters used are almost 4x lesser than the
Wide & Deep Network [20].

After reducing the 3 inputs sections to lower dimensions (for
both user and glance embeddings), we jointly trained the model for
all 3 sub-spaces with three different functions as seen in Eq. 6. It is
different from taking an ensemble of 3 different models since here
gradient flows from output to input jointly. Handling the sections
differently, helps model to have content-based recommendation
capability (from text and images) and collaborative-based capability
by using Factorization Machine layers.

P(y = 1l ) = hgs(alF ). go(alfF alF). g5(al". 1))
(6)

The text and the image section of the model are build on past
positive interactions and attempts to find an item from the candidate
glances giving a content-filtering capability to the model. We use
an inner product (defined by ( . )) to find the most similar glance
from user history, giving sjr for image-based features and sg for
text based features.

sip=(ay . ag") )
stp=(all . §F ) (8)

The meta-feature embedding of the user and item are passed to
a different section to get spp, drawing its inspiration from the



DeepFM architecture, where an intermediate layer is used to get the
1st-degree and the 2nd-degree cross features. Contrary to traditional
collaborative filtering systems, which work on a user and item level,
we use meta-features (auMF, a‘g’IF), so we do not need to train for
each and every user. This reduces the training time of the model,
hence we call it FM-Lite, a computationally lighter version of the
factorization machines.

MF _MF , MF _MF
smr = [a, , ag , (a, .ag )] )

All these outputs from different sections (sir, str and spF) are
concatenated together, and which is then fed to one common logistic
loss function for joint training. We backpropagate the gradients
from the label to the input using Stochastic Batch Gradient Descent
Algorithm with Adam Optimizer, with learning rate = 0.001.

5 DATASET & RESULTS
5.1 Dataset

To build the dataset, we take the user’s interaction data for 35
days. We take the interaction data for the first 28 days to build the
user embedding and glance embedding and use the later 7 days for
interactions to train on. This was done to mimic the online setting
of the model.

To build our train and validation data, we split the training data,
by dividing the users into 80:20 split. Training Data has interactions
from all user from the 80 split, and the Validation set has it from
the users from 20 splits. This gives model capability to predict for
the users it was not trained for hence we can reduce the training
data by not training for all the users.

5.2 Offline Evaluations

As part of offline evaluations, we test the model on interactions of a
single day. We evaluate the model’s performance against following
models.

Baseline: We compute cosine similarity between the user features
and glance features and use it as a baseline model.

Linear: We concatenate the user features and glance features, and
pass it through a Logistic Regression Model.

MLP: We concatenate and take inner product of the user features
and glance features, and pass it through a Dense ReLU Layers.
Wide & Deep: We concatenate the user features and glance features,
and pass it through a Wide & Deep Model.

5.2.1 Metrics. For offline experimentation, we use a popular and
widely accepted metric, Mean Average Precision MAP@k and a
custom metric Mean Peek Rate Ratio MPRR@k. The motivation
behind using this custom metric is to check, if the content rated
high by the model (let us say top k content) has a higher rate of
engagement than the overall rate of engagement for the users. This
gives us a relative measure of liking of content by the user. We
define both the metric:

Mean Average Precision: MAP is the average AP@N metric
over all |U| = n users. Average Precision (AP@N) is defined as
Precision@k across all recommended item.

k
MAP@K = % 3 % 3 P(i).rel(k) (10)

u; €U i=1

Table 2: Comparison of various models

Model MAP@25 MAP@50 MPRR@25 MPRR@50 Parameters

Baseline 0.406 0.368 1.075 1.026 -
Linear 0.437 0.433 1.112 1.044 1.2k
Dense 0.485 0.458 1.233 1.061 11.5 Mn

Wide & Deep 0.491 0.465 1.238 1.062 8.8 Mn

FM-Lite 0.504 0.479 1.261 1.067 2.4 Mn

Mean Peek Rate Ratio: We define the custom metric Peek Rate
Ratio (PRR) for a user as the ratio of peek-rate of the top k prediction
for the user to the peek-rate of all the predictions for the same user.
Mean Peak Rate Ratio (MPRR) is the average Peek Rate Ratio (PRR)
across all users U where |U| = n.

PR(k)u,

1
MPRR@K = - 3. 4, et 5

(11)

where PR(k),, is the peek rate of top k prediction and PRy, is
the overall peek-rate for the i*" user
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Normalised Count

WL

Peek Rates

Figure 6: Comparison of histogram of peek rates before and
after normalisation.

5.2.2  Normalizing Users. We see that many users, because of the
lower number of interactions have relatively higher peek-rates than
the users with a greater number of interactions, this is due to data
insufficiency of the new users or less active user. To normalize this,
we use the beta distribution’s inverse cumulative density function
to get a normalizing value for a user. We saw an improvement in our
offline results when we normalize the user’s peek rates. We can see
in Figure 6 the histogram of peek rate of users before and after the
normalization. Normalization reduces high peek rates of irregular
users. For a user u; with peeks = a and no peeks impression = b, we
define n as

n=1 - (F‘l(p =0.975|a,b) — F~!(p =0.025|a, b)) (12)

X
where, p=f(x|ab)= ﬁfo y@ (1= )bt



Table 3: Comparison of the Recency Experiments, with or
without the decay function.

Model MAP@50
No-Decay 0.478
Decay 0.481

where B(a,b) = % and I'(z) is a Gamma function. The beta

function, B, is a normalization constant to ensure that the total
probability is 1.

5.2.3  Negative Sub-sampling. The data is an unbalanced, with peek
to non-peeks ratio equal to 1:99. We sampled the negative classes
with various fractions and found that sub-sampling the negative
class to 2:1 makes the model perform best.

5.2.4 Exponential Decay. We also experimented with recency of
the label by weighing more on recent interactions, by incorporating
a decay function. We define the recency for an interaction, as

d(t) = exp( ¢ —Tl‘p))

where, t = is the day of interaction, t,, is the present day and T = 28,
that depends upon how long we look back while creating the user
profile. We saw an increase in the offline results as seen in Table 3

We evaluated the model on two metrics MAP and MPRR. Along
with that we experimented with few changes like normalising the
peek-rates, various sub-sampling fractions and introducing a re-
cency weight and incorporated them into the final model evaluated.
We can see in Table 2, that our model outperforms all the other
model we experimented against, and we evaluate the model in an
online setting in next section.

(13)

5.3 Online Evaluations

The objective of the platform is to provide personalized content. We
base the online performance of the model on two metrics, the Av-
erage peek rate or Click-through-rate(CTR) across users U, where
|U| = n and Average Duration Spent across users on the platform.
Some statistics are shown in Table 4.

1 peeks,,.
Average Peek Rate = — Z L - (14)
n A, impression,,
. 1 .
Average Duration = - Z durationy,; (15)

u; €U

Table 4: Statistics of the data for random 5% users

Data Interactions (M) Peek (M)
User Profile (28 days) 600 6
Training (7 days) [80 split] 158 1.5
Validation (7 days) [20 split] 38.7 0.38
Testing (1 day) 20.5 0.195

To measure the performance of our model online, we run two
models, the Baseline Model and the Proposed Model in separate 5

buckets (5% of the traffic) and compare on the above-mentioned
metrics. We choose Baseline Model, since it serves as a good baseline
for serving and latency requirements for the deployment. As we
see from the Figure 7 that our model improves over the baseline
with a good margin, improves average duration spent by the user
by +8.1% and click-through-rate or peek-rate by +2.3% over the
baseline model.

14 N EBaseline
Our Model
12

10

2
. H

Avg. Duration Awvg. Peek Rate

Figure 7: Comparison of the two models we put online, our
model outperforms the baseline model for 5% users online

6 SYSTEM DEPLOYMENT

With the ever increasing amount of data during model training
phase and accurate predictions with low-latency and high through-
put requirements at online serving time, we needed a robust and
easy to scale solution to meet our requirements. Existing online pre-
diction serving systems such as Tensorflow Serving[33], Mleap[34],
Clipper[35], LASER[36], Velox[37] are not designed to provide an
all-together generalized, cost-efficient, highly available, scalable
solution with supports for batching, config-driven traffic splitting-
and-combination, explore-exploit and A/B testings, and single-click
model training, updation and deployment mechanisms. To address
this, we have built an in-house solution Sigma™, which is an end-
to-end ML platform to seamlessly discover, collaborate, experiment,
deploy and operate ML models at scale. Sigma is deployed on Azure
Cloud using auto-scaling Azure Kubernetes Service(AKS)[38].

For training, we are using Azure Distributed Data Engineering
Toolkit (AZTK)[39] to launch PySpark jobs to generate User Profiles
& Glance Profiles in parquet format[40]. These training jobs are
scheduled on Azure Batch Scheduler using Low Priority VMSS[41]
which are cheap by 1/5 of original price of virtual machines. PyS-
park trained models are serialised with Mleap format & Tensorflow
trained models are serialised using SavedModel Bundle APIs[42];
stored on Azure Blob[43] to make it available for online serving.

Figure 8. demonstrates our Online Prediction Service Architec-
ture. Prediction service has two main components :

e Model Controller(MC)
e Leaf Predictor(LP)

MC : MC has two layers- L0 and L1; where L0 layer acts like a Traffic
Splitting Layer which forwards the request to the corresponding
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Figure 8: Serving Architecture

L1-shard based on the user-id hash. L1 consists of sharded-MC
which is bucketized on basis of hash of user-ids and forwards the
request to an appropriate LP; L1-MC splits the batch parallelly into
chunks of smaller batches, which is determined by how much each
LP can handle for the required capped latency requirement.

LP : LP supports serving using various libraries viz. Mleap, Ten-
sorflow Serving. It handles reloading of model bundle and user and
glance profiles into in-memory HashMap, as and when they are
updated on the Azure Blob Storage. Batch-size for our model is 100
and for baseline model it is 400.

Both MC and LP are stateless Java8 SpringBoot[44] Jetty Applica-
tions and are deployed on auto-scaling AKS cluster. We use Apache
Thrift[45] over HTTP for fast inter-communication between the
services. Each prediction request consists of one user-id and a batch
of glance-ids and the response is a list of predicted scores corre-
sponding to each glance-id. Mleap’s LeapFrame inherently gives
predictions row by row even for a batched Dataset, which caused
latency to grow linearly with batch-size; hence we added a Batch-
LeapFrame in Mleap library to process requests parallelly. Setting
timeout for request from MC to LP to a lower value than the capped
latency and having a couple of additional retries for timed-outs
requests further helped in lowering p99 latency in case of heavy
load on one of the LP pods.

Initially, we tried D14j[46] Java Library for online predictions of
our model in batch but it didn’t scale well in our multi-threaded en-
vironment. As we decreased batch-size to a relatively small number,
the thread dump logs clearly showed the synchronized blocks in
DI4j APIs as seen in Figure 9. So we shifted to Tensorflow Serving
by bringing up Tf-Server in each pod and sending requests using
the grpc protobuf client, that gave us throughput gains of 5x.

Using in-memory localised caching and optimized BLAS libraries
we could further improve on throughput by 3x. The incoming
request mean batch-size to L0 MC is around 1000 glances and
the overall p99 latency of the system is 50ms and per pod of 14-
cores/56-GB we are able to serve 2,100 ops/sec which translates to
150k predictions per core per second. Moreover, to decrease the

production cost of serving system we deployed 2/3rd of total pods
on spot vmss in one nodepool[47] and 1/3rd on dedicated vmss in
another nodepool of AKS and leveraged kubernetes service label
selectors[48] to serve the traffic in this hybrid vmss ecosystem.
This helped in saving costs further by 40% without having any
performance impact on latency of live serving traffic.

4,000 —— Baseline Model

(Mleap)

—— Baseline Model
(Batch Mieap)
Linear Model

— Di4j

— TtServe

—— Our Model (tf +
caching + blas)

3,000

2,000

Throughput ( ops / sec )

1,000

100 200 300 400

Batchsize

Figure 9: Comparison of variation of throughput with batch-
size for multiple models with p99 latency capped at 50ms

7 CONCLUSION

In this paper we present a solution to address the challenges of
multi modality of content and the ability to serve a recommenda-
tion engine at scale. The paper presents a solution that addresses
each of these problems and shares our learnings of the process. We
use a neural network architecture called FM-Lite, a computationally
lighter version of factorization machines that combines cross do-
main user and item features. Through experiments we demonstrate
how the model outperforms various other neural network models
not only in performance metrics but also in significant reduction
in the number of parameters that it uses. We further showcase and
share our learnings on system design practices to deploy a robust,
economical and scalable model while adhering to the requirements
of low latency and high through-put and deploy this model in the
online world on a scale of 100 M Daily active user base.

In future we will focus on iterating on the current architecture
to make the recommendation system more effective by exploring
cross-domain embedding for vernacular languages and introducing
diversity in the feed.
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