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ABSTRACT
Balancing scalability and relevance is important for industry-level
recommender systems. A large scale e-commerce website may have
millions of customers and millions of items. Typically, researchers
and data scientists generate models which are anchored on cus-
tomer level, or item level. Customer anchored recommendation
models are typically surfaced on front pages of e-commerce web-
sites. Similarly, item pages typically host various item anchored
models. In each of the two usecases, developers frequently store
models offline, i.e., models are stored for each customer, or are stored
for each item. Scalability challenges arise when one wishes to per-
sonalize item anchored models. Offline based approaches, where
both customer and item ids are stored as anchors become rapidly
unscalable as number of customers and items increase. Another
approach is to utilize an online approach on a pre-computed recall
set (for example: item recommendations for a given anchor item),
and then to apply users’ preferences. In this paper, we describe
a scalable personalized item recommender system which follows
the latter approach. We take historical user preferences (customer
understanding) and existing item recommendation models to per-
sonalize item anchored model. We showcase several usecases to
show how we apply online inferencing algorithms and scale it up
to millions of customers.

CCS CONCEPTS
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1 INTRODUCTION
Recommending personalized items is an essential but challenging
task for e-commerce. Personalized recommendations provide cus-
tomers with more relevant suggestions, hence improving customer
experience. One challenge that personalized recommendation sys-
tem faces is scalability. This is because such system must be an-
chored on combinations of customer and item and and the size
of such storage schema can get aggressively large. This is espe-
cially true for large e-commerce sites such as walmart.com where
millions of users interact with millions of products daily on the
site. We come up with a novel re-ranker framework where item
relevance and customer preference act as independent and parallel
factors. This structure allows us to break down (customer id, item
id) anchored storage into (customer id) anchored storage and (item
id) anchored storage, thus reducing storage requirement. Moreover,
on the modeling side, we now have the freedom to train item rel-
evance models and customer preference models separately. The
re-ranker will eventually combine the results from both models
using a machine learned inference function and provide a final list
of recommendations.

A main motivation for our re-ranker system is that there are
often existing non-personalized item anchored recommendation
models that show great performances. These models have been fine
tuned through multiple iterations and provide a very good recall
set. We do not want these work to go to waste and start building
personalized system from scratch. So we design our re-ranker to
utilize the results from these non-personalized models as our recall
set and implement personalization within the established recall set.
Our personalization models target different attributes of personal
preference such as price, brand, flavor, and etc. The re-ranker then
uses these attribute preferences as independent features. This allows
our data scientists the freedom to focus on personalizing a single
attribute at a time instead of having to reformulate existing item
anchored recommendation models. Our system can also rapidly
extend to different activations (e.g. similar item, complementary
item, etc.) because it is able to utilize the same attribute features
and similar inference function structure across different activations.
The only change that needs to happen from activation to activation
is to re-calculate/re-balance the weights between item relevance
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and personal preference as well as the weights associated with each
attribute feature.

2 RELATEDWORKS
There has been a plethora of research in the field of personalized rec-
ommendation systems. The traditional matrix factorization model
[6] has been extensively studied and many of its variants have been
developed to tackle different challenges such as implicit feedback
and sequential prediction [5] [11] [12]. More recently, many embed-
ding methods such as word2vec [8] [9] have been extended to the
e-commerce domain [1] [13] [14]. Most recently, graph based meth-
ods have gained much traction in personalized recommendation.
Many state-of-the-art recommender systems are designed using
tools such as Graph Convolutional Neural Networks [2] [17] and
Knowledge Graphs [4] [16].

However, not many research discuss how to actually implement
their models at scale. Of note, representation learning methods have
been widely used to support large-scale recommendation engine
[3] [7] [10] [15]. The difference between these works and ours is
that they model implicit customer preferences through user past
behavior whereas we try to generate explicit user understanding.

3 SYSTEM ARCHITECTURE
Here at Walmart, we maintain both offline item anchored recom-
mendation and customer understanding models. We describe in
detail how the inference function utilizes both the existing item
anchored recommendation model and customer preferences to pro-
vide personalized item anchored recommendation. We then detail
on how we utilize the inference function on the serving layer.

3.1 Inference Function
The goal of the inference function is to identify, for a given user
and item, what is the most optimal set of recommendation. More
precisely, we optimize

max
𝑟 ∈𝐼

𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖, 𝑟 ) ∀𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 (1)

where 𝑢 is user, 𝑖 is anchor item, and 𝑟 is set of possible recommen-
dations. Notice that, while the aforementioned formulation is still
tractable, in an industry setting, it is difficult to pre-compute the
scores. At Walmart, we have tens of millions of customers, along
with tens of millions of items, so computing the best (𝑢, 𝑖, 𝑟 ) triplet
becomes very difficult.

Rather, we take an existing item recommendations, and frame it
as a re-ranking framework. More precisely, suppose that we have
an existing item recommendation which computes

𝑅𝑖 = max
𝑟 ∈𝐼

𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑟 ) ∀𝑖 ∈ 𝐼 (2)

where 𝑅𝑖 is the set of recommendations for anchor item 𝑖 . Now the
optimization function becomes

max
𝑟 ∈𝑅𝑖

𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖, 𝑟 ) ∀𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 (3)

where 𝑟 is limited to the set 𝑅𝑖 .
Notice that the above formulation still suffers from having to pre-

compute recommendations for each (𝑢, 𝑖). To mitigate this issue,
we treat 𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖, 𝑟 ) as a combination of two different products.
We first notice that we do not need to predict which anchor item

𝑖 a given user 𝑢 is likely to view or purchase next. On the other
hand, we do need to understand a users’ preference towards a
recommended item 𝑟 ∈ 𝑅𝑖 . We denote the users’ preference towards
a recommended item as 𝑔(𝑢, 𝑟 ). We compute 𝑔(𝑢, 𝑟 ) by utilizing
customer understanding which we will illustrate in the case study.

Furthermore, we have an existing item anchored model, ℎ(𝑖, 𝑟 ).
These models are optimized based on which recommended items
𝑟 ∈ 𝑅 best optimize a given business metric. Examples of these
include With 𝑔(𝑢, 𝑟 ), and ℎ(𝑖, 𝑟 ), we are able to compute

𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖, 𝑟 ) ≈ 𝑓 (𝑔(𝑢, 𝑟 ), ℎ(𝑖, 𝑟 )) (4)

The benefit of the above representation is the decoupling be-
tween item-anchored model optimization (denoted by ℎ(𝑖, 𝑟 )), and
that of customer preference model (𝑔(𝑢, 𝑟 )). Such decoupling allows
the two specialized track to work in parallel, and then to mutually
work on a function 𝑓 () which binds the two models together.

3.2 Overall Architecture
Our training infrastructure is set up in such a way that customer
understanding track, and item recommendation (item anchored
model) track can work independently of one another. Once each of
the tracks have trained their model, these are pushed to an existing
database. Our system can start training once the two tracks are
pushed to the database.

Our proposed re-ranker system works for all the different ac-
tivation. For each activation, we train the inference function in-
dependently using a supervised machine learning algorithm. We
use the best performing item anchored model to get the relevant
scores. Our framework is not dependent on this and we can use
the scores coming from any kind of model. We utilize the customer
understanding attribute scores along with the relevance scores for
training the inference function.

We use the customer historical activity data depending on the
activation for training the weights for relevance score and each
customer understanding attribute - brand, price, flavor, etc . Our
re-ranker system has the flexibility of selecting any number of cus-
tomer attributes from the available list of attributes. These weights
can be present at global level or any taxonomy hierarchy level for
the contextual information. We collect the customer past module
related feedback data and create relevant labels. Then, we train the
weights offline optimizing different function for different activation
and get weights for relevance and each of the customer attributes
selected.

We use these weights for offline evaluating the different relevant
metrics. Many times, we use the ranking metrics like Normalized
Discounted Cumulative Gain(NDCG), Mean Reciprocal rank(MRR),
Mean Hit Rate(MHR) and Mean Average Precision(MAP) to com-
pare the baseline model recommendations against the re-reranked
model recommendations.

Once we finalize the re-ranking model that outperforms the
baseline model, we make the corresponding model weights and
inference function available to the serving layer, which uses them
for online inferencing and re-ranking the recommendations.

Wemaintain a pipeline for continuously collecting various useful
metrics like percentage of re-rankings happening, coverage of each
customer attributes, and the above mentioned ranking metrics. We
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have a feedback loop where use the new feedback data to train the
model and generate new weights.

Our overall architecture is shown in Figure 1.

4 CASE STUDIES
We demonstrate how our re-ranker works through two case studies,
each of which hinges on a distinct track of customer preference
understanding. We first provide an overview of how customer un-
derstanding models come about. Customers may search, view, click,
add-to-cart, or purchase various items at Walmart. Each of these
items have meta-information such as brand, flavor, or price-level
associated with it. We use these meta-information to build cus-
tomer preferences. As an example, a customer may decide to view,
and ultimately purchase ‘Chobani Non-Fat Peach Greek Yogurt’
over multiple visits to an e-commerce website. The same customer
may later on purchase ‘Chobani Non-Fat Strawberry Greek Yogurt’.
Based on these interactions, we learn that a customer may prefer
the ‘Chobani’ brand, prefers ‘non-fat’ yogurt and likes ‘peach’ and
‘strawberry’ flavors. Here at Walmart, we maintain each customer’s
preferences across different attributes such as flavor and brand. We
denote these preferences as ‘Customer Understanding’.

In this section , we will showcase how our re-ranker carries out
personalization using two different aspects of customer understand-
ing: brand and price. We will apply brand understanding to the
"bought also bought" (BAB) application and apply price understand-
ing to the "view ultimately bought" (VUB) application. Both of these
applications are currently powered by item anchored modules.

4.1 Brand Understanding
We use a very simple and straightforward tf-idf style method to
compute customer brand affinity scores. This score essentially re-
flects how much a customer has interacted with a given brand in
the past. Moreover the customer brand affinity scores are computed
at the category level. For example, the latest iphone will fall un-
der Prepaid Cell Phones category. One brand might have products
across multiple categories and our customer brand affinity scores
can capture a customer’s preference for brands under each specific
category.

While our customer brand affinity model provides explicit sig-
nals for customer brand preference, it suffers from poor coverage.
This is because if a customer has never interacted with a brand
before, then we wouldn’t have an explicit brand preference for this
person and the brand. In our experiment, customer on average
has 14.2% of brand coverage. In order to compensate for this, we
develop a brand2brand model that provides implicit signal on cus-
tomer preference for brands they have not interacted with before.
The brand2brand model is based on the word2vec model [8] [9]
trained on historical session data of items co-viewed within the
same session. Within the word2vec framework, each session on our
website is treated as one document and each brand at a specified
category level is treated as a word. Some example results from the
brand2brand model are shown in Table 1.

For a given brand, the brand2brand model provides a list of the
most similar brands. This is useful to back-filling themissing explicit
customer brand affinity scores as we can use the following inference
logic. When we are missing a customer C’s explicit brand affinity

score for brand A, we go down the list of the most similar brands to
brand A. We then use the first brand, say brand B, where we have
explicit brand affinity score from customer C to brand B, multiply
this known customer brand affinity score with the similarity score
between brand A and brand B, and use this product as the customer
brand affinity score from customer C to brand A. Applying the
brand2brand model with the aforementioned logic improves brand
coverage to 60.6%.

After developing the explicit customer brand affinity model sup-
plemented by the brand2brand model as implicit customer brand
affinity, we are ready to activate our models on the re-ranker for the
bought also bought (BAB) application. The current BAB model is
used at the Post Add to Cart page of walmart.com. The BAB model
has about 1.8 million anchor items and an average of 30 recommen-
dations for each anchor item ranked by a "relevance" score. The
re-ranker combines the relevance score and our customer brand
affinity score to re-rank the recommendations for each customer.
The combination of relevance score and brand understanding is
set to be linear to minimize latency and is trained independently
within each different category. The exact form is as follows:

𝑦𝑐 = 𝑤𝑐
0 +𝑤

𝑐
1 × relevance +𝑤𝑐

2 × brand_affinity

where 𝑐 represents category c. The weights are learned offline
through a logistic regression model where the response signal is
co-boughtness within the same session. We document the offline
evaluation results comparing using the re-ranker to personalize
and re-rank BAB recommendations against using the relevance
score (non-personalized) alone in Table 2.

Model Non Personalized
BAB

Personalized BAB

NDCG@5 0.031 0.034 ∗

MHR@5 0.046 0.049 *
MRR@5 0.027 0.029 *
MAP@5 0.032 0.035 *

Table 2: Offline evaluation results applying brand under-
standing to the "bought also bought" application

There is improvement in all of the ranking metrics for person-
alized BAB model against the non-personalized one. There is 1%
lift in NDCG, 0.7% lift in MRR and 0.9% lift in MAP. 78% and 95% of
times re-ranking happens across top 5 and top 30 recommendations
respectively. The model weights and the inference function are
available to the serving layer which does online re-ranking on the
recommendations.

We perform a more deep dive analysis on which of the factors
the customers give more weightage to- brand affinity or relevance
within each category. We find that for some categories of items,
customers prefer brand affinity over relevance, while for others,
they prefer relevance over brand affinity. Some of these categories
are shown in Table 3.

* indicates statistical significance at p < 0.05 compared to baseline



Nimesh Sinha, Selene Xu, Swati Bhatt, Abhinav Mathur, Jason H.D. Cho, Sushant Kumar, and Kannan Achan

Figure 1: System architecture. Engineers train a function 𝑓 () by utilizing existing customer understanding, recall set, and
historical module interactions for each customer. The serving layer imports the function 𝑓 () and its model weights.

Brand 1 Category 1 Brand 2 Category 2 Similarity Score
Versace Women Fragrance Elizabeth Arden Women Fragrance 0.96
Versace Women Fragrance Coach Women Fragranc 0.95
Apple Cellphones iPhone Cases 0.90
Apple Cellphones Straight Talk Sim Cards 0.88

Table 1: Example from Brand2brand model

Categories with more brand
preference

Categories with more
relevance preference

Maternity Sleepwear Unisex Occupation Footwear
Girls Sweater Music Gift cards

Girls Woven Top Floormats
Girls Swimwear Breakfast and Baking

Table 3: Analysis of brand affinity preference against rele-
vance

We observe that customers have more brand preference over
relevance for many of the categories related to clothing. This is
understandable because brand is driving distinguisher in the apparel
industry. It is hard to generalize for the opposite case where the
customers have more preference for relevance over brand. However,
other attributes seemed more important in many of the categories
in which relevance were higher. As an example, customers may
be more concerned with the design or color when they purchase
floormats. However, for the purpose of this usecase study, we did
not build models based on design or color.

4.2 Price Understanding
In order to understand how price point affects customer’s purchase
preference, we first study how price varies from item to item. We
assign each item into a price bucket which reflects how expensive
the item is compared to its peers. Since we want to compare prices
of items of similar property and function, we perform this price
banding within each category. We roughly classify items into 5
price bands (low, medium low, medium, medium high, high) within

each category, with lower price band pointing to cheaper/more
affordable products and higher price band pointing to more expen-
sive/luxurious options. This item price understanding offers us a
simple naive feature for the re-ranker: price2price. This is defined
as the difference between the price band of the recommended item
and the price band of the anchor item. It measures how far/close
the price bands are between the anchor item and the recommended
item. Some examples of the price banding results are shown in
Figure 2.

On the other hand, we need to understand how customer prefer-
ence is affected by how expensive a product is. We use a customer’s
past behavioral patterns on our website to predict how likely the
customer is going to buy something that’s at the price point of the
recommended item. We use a machine learning model to deter-
mine customer price affinity scores, which will then be fed into the
re-ranker as a second feature. Our customer price affinity model
covers roughly 41% of all the recommendations.

Ultimately, the re-ranker brings both the customer price affinity
feature and the price2price feature into the view ultimately bought
(VUB) application. The current VUB model has about 7 million an-
chor items and an average of 50 recommendations for each anchor
item ranked by a "relevance" score. The inference function here is
a linear combination of three features: relevance score, customer
price affinity score, and price2price:

𝑦 = 𝑤0 +𝑤1 × relevance +𝑤2 × price_affinity +𝑤3 × price2price

The weights associated with each feature here are trained at a global
level (as opposed to at each category) and are learned through a
logistic regression which optimizes for items viewed and purchased
within the same session. The offline evaluation results are shown
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Figure 2: Examples of products falling under each price band in the Digital Cameras category.

in Table 4.

Model Non
Personalized

VUB

Personalized
VUB with
baseline

tf-idf style
price affinity

Personalized
VUB with
machine
learned

price affinity
NDCG@5 0.294 0.295 0.299 ∗

MHR@5 0.496 0.498 0.505 *
MRR@5 0.542 0.543 0.542
MAP@5 0.119 0.120 0.122 *

Table 4: Offline evaluation results applying price under-
standing to the "view ultimately bought" application

In Table 4, we compare the non-personalized model against two
personalized models: one baseline method where we use a simple
tf-idf approach to compute price affinity scores and one machine
learned method where we leverage months of user behavioral data
on our website to learn their price preference. While the baseline
method slightly outperforms the non-personalized VUB model, the
machine learning method clearly proves to be the overall best per-
former. The machine learning method shows 1.7% improvement in
NDCG, 1.8% improvement in MHR, and 2.5% improvement in MAP.
The improvements in NDCG, MHR and MAP@5 are statistically
significant at 5% level in our offline evaluation.

Interestingly, the percentage of recommended items that got
re-ranked to a different position among the top 5 recommenda-
tions is greater for the baseline method than for the machine learn-
ing method. In other words, the baseline approach actually effects
greater re-ranking despite having less influence on the outcome.
% re-ranked is 35% for the baseline and only 29% for the machine
learning method.

We further take a look at the weights associated with each fea-
ture, i.e. 𝑤1, 𝑤2, 𝑤3 in the inference function. After adjusting for
feature variance, the ratio for𝑤1:𝑤2:𝑤3 = 73:19:10. This shows that
the relevance measure from the item-anchored VUB model has the
greatest influence in the personalized model. The customer price
affinity feature has greater weight than the price2price feature.

* indicates statistical significance at p < 0.05 compared to baseline

5 CONCLUSION
In this paper, we presented our novel solution to the problem of scal-
able personalized recommendation systems. Our re-ranker frame-
work isolates the effect of item relevance, learned from item an-
chored recommendation model, from personal preference, thus
allowing us to develop personalization on top of the results from
existing non-personalized models. We also opted to express cus-
tomer preference (defined to target different product attributes such
as brand, price, flavor, etc.) in terms of explicit signals instead of
implicit representations. We introduced a couple of examples on
how we can use the framework in real applications. Both case stud-
ies showed great potential of our re-ranker system through offline
evaluations.
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