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ABSTRACT
Recommender systems have become critical tools for e-commerce
businesses in recent years and online travel platforms such as Expe-
dia Group have made heavy use of them in production. Contempo-
rary travel platforms benefit greatly from the use of recommender
systems as very often the space of products (trips) is quite large
and shopping cycles often stretch into the weeks.

Expedia Group has successfully trained and deployed multiple
types of recommender systems in order to help our travelers find
the perfect destination and property for them. In recommender sys-
tems literature, much attention is paid to the mathematical aspects
of the field but here we focus on best practices in applying recom-
mender systems in large-scale e-commerce for the improvement
of browsing and shopping experiences.

In this paper, we describe how we personalize the user experi-
ence on a number of our core pages by exploiting existing inter-
nal recommender systems and relevant recommender system liter-
ature. Additionally we note several critical lessons learned about
the importance of a robust machine learning platform, the need to
apply engineering best practices and how best to integrate and test
recommender systems in production.
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1 INTRODUCTION
Typically users of our sites (e.g. expedia.com, hotels.com, vrbo.com)
begin their trip planning process on one of two pages: the home
page or a “destination landing page” (DLP), a page created for a
specific destination such as Paris, New York or Tokyo. Both home
pages and destination landing pages contain separate sets of rec-
ommendations of destinations and properties in the form of horizontal-
scrolling carousels. Not all travelers need both sets of recommen-
dations since many already know their destination and are then
determining which property to book. Yet others have some ideas
about the type of trip they want to take (e.g. beaches in Texas), but
are flexible as to the specific destination.

Many travelers will make multiple visits to our site before mak-
ing a booking. In fact, repeat travelers make up a significant frac-
tion of traffic to both landing and home pages. We can use re-
cent signals such as properties viewed and destinations searched
to reduce the shopping time for repeat travelers by recommend-
ing properties and destinations similar to those they have already
searched for1. But for travelers identified as new to the site, we of-
ten have no historical data for them and therefore cannot use these
strategies.
1Long term signals are much less useful, as they are often for a different trip.

For example:
• Vrbo Home Page: Travelers can land on this page by en-
tering vrbo.com directly on their browser. Figure 1 shows
an example of Vrbo’s home page.

• Hotels.com Home Page: Travelers can land on this page
by entering hotels.com directly on their browser.

• Vrbo Landing Pages: Landing pages refer to destination
landing pages. Travelers usually land on destination landing
pages via searching on search engines.

• Hotels.comLandingPages: Similar to Vrbo, landing pages
refer to destination landing pages. Figure 2 depicts a landing
page for San Diego. Travelers usually land on destination
landing pages via searching on search engines. In this ex-
ample, a traveler probably searched for “san diego vacation
homes”.

Prior to the introduction ofML-driven personalization techniques
our landing and home pages did not recognise or change the expe-
rience for travelers based on what we already knew about them.
Returning travelers would often have to go through the long pro-
cess of restarting their search, find properties they liked, and look
for comparisons and alternatives themselves.

Our motivation for this work was to make the booking experi-
ence effortless and to enable travelers to make progress based on
their previous visits. We hypothesize that by making contextually
relevant destination and property recommendations to travelers
based upon their recent browsing behavior we can substantially
increase the likelihood of matching them with their ideal trip. We
provide evidence to support this hypothesis by exploiting our in-
ternal Machine Learning (ML) platform and two systems already
deployed within the organization for other internal use cases: a
Property Recommender System (PRS) and a Destination Recom-
mender System (DRS).

The proposed solution must address the following challenges:
(1) Software engineers from landing pages and home page team

should easily integrate the two recommender systems.
(2) The recommender systems should provide predictions in a

synchronous and an asynchronous fashion.
(3) The recommender systems should be able to leverage very

recent history for each traveler.

1.1 Use Cases
Figure 3 shows a high-level abstraction of Traveler’s ShoppingMap.
The shopping journey of travelers is non-linear, and there aremany
different traveler journeys. Some land on our websites and belong
toDiscovery phase, then they move to Shop phase and, finally, Book-
ing phase. However, there are many travelers who know already
where and when to travel, and at which property they want to stay
and they start in the Shop phase. Others already have a shortlist of
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Figure 1: Vrbo Home Page

Figure 2: Hotels.com Landing Page

potential properties in mind, but haven’t made a final selection and
they begin in the Booking phase. The purpose of home and landing
pages is to fulfill the needs of all travelers that are in Discovery
and Shop phase. These are some examples of selection constraints
for travelers in the Discovery and Shop phase:

(1) Traveler has not selected the date, destination or property
(Discovery),

(2) Traveler knows the date and destination, but has not se-
lected the property (Discovery),

(3) Traveler knows the destination, but has not selected the
property and is flexible on the dates (Discovery),
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(4) Traveler has selected the destination and date, and has a
shortlist of properties (Shop),

(5) Traveler has selected the destination and property (or has a
shortlist of either / both) and dates (Shop).

Figure 3: Traveler Shopping Map. In the Discovery phase,
travelers are open to any of the following: dates, destination
and/or properties. In the Shop phase, travelers are creating
a shortlist of destinations and properties, and are conduct-
ing further research on them. The traveler books a specific
property for specific dates in the Book phase, and physically
stays at the booked property during the Stay phase.

1.1.1 Discovery. During the Discovery phase travelers can either
be looking for a destination to travel to and/or a property to book
within a destination they already decided to visit.

At Hotels.com and Vrbo we aim to facilitate this process by pro-
viding travelers destination and property recommendations in or-
der to narrow down the plethora of available destinations and prop-
erties.

On the Hotels.com homepage, recommender systems are used
on:

(1) The search box where travelers receive recommendations
for nearby destinations based on their geographical loca-
tion.

(2) The properties carousel where travelers are shown person-
alized recommendations based on their previous browsing
sessions.

(3) The destination panel where travelers are shown person-
alized recommendations based on their previous browsing
sessions.

Destination recommenders are used on destination landing pages
where recommended destinations similar to the one users searched
for are shown.

In the same manner, Vrbo’s home page and landing pages show
personalized property recommendations based on their previous
browsing sessions.

1.1.2 Shop. In this phase, travelers have already shortlisted a num-
ber of properties and destinations. Many of them have even se-
lected their destination, and they just need to make decision be-
tween a handful of properties.

In order to facilitate travelers in the Shop phase, we initially im-
plemented and deployed a couple of heuristic algorithms. Many

of our home and landing pages contain carousels showing recent
searching and browsing behavior as well as separate recommen-
dation carousels based on said recent behavior. We proved the
hypothesis that recent activity is correlated with shortlisted prop-
erties and/or destinations using online experiments. Typically we
choose the simplest possible solution to start aswe believe that sim-
ple solutions can be very powerful in terms of providing better user
experience and provide baselines for future ML based approaches.

2 IMPLEMENTING PERSONALIZATION FOR
LANDING PAGES

To implement landing and home page personalization, we first tried
a couple of heuristics. Applying simple methods allowed us to both
establish an experimental baseline and address a number of techni-
cal issues before adding the complexity of machine learning. With
a baseline established, the heuristic logic can then be replaced with
machine learning models and tested for effectiveness and end-user
impact. The aforementioned heuristic of most recent activity was
employed for both Discovery and Shop phases.

After employing these heuristic approaches, we utilized recom-
mender systems to further enhance personalization. These recom-
mender systems are explained in the following subsections.

2.1 Property Recommender System
The goal of a Property Recommender System (PRS) is to identify
the most similar properties to recent properties travelers have in-
teracted with. Formally, let 𝑃 = {𝑝1, ..., 𝑝𝑀 } denote the set of prop-
erties where𝑀 is the number of properties and𝑇 = {𝑡1, ..., 𝑡𝑁 } de-
note the set of travelers where 𝑁 is the number of travelers. PRS
can then be formulated as a problem of conditional probability dis-
tribution estimation

𝑃
(
traveler will click 𝑝𝑘 |traveler already clicked 𝑝𝑖1 , ..., 𝑝𝑖𝑚𝑖

)
where the indices 1 ≤ 𝑖1,…,𝑖𝑚𝑖 ≤ 𝑀 represent an exhaustive list of
indices for traveler 𝑡𝑖 ’s previous clicks. So,𝑚𝑖 is the total number
of clicks by 𝑡𝑖 .

2.1.1 Model. Wedecided tomodel the aforementioned conditional
probability distribution using Word2Vec and specifically the Con-
tinuous Bag-of-Words (CBoW) [10], [9] model. Similar approaches
that usedWord2Vec for item recommendations can be found in [5],
[6], [11], [14]. Applied to property recommendations, CBoW pre-
dicts the target property 𝑝𝑘 based on the properties 𝑝𝑘−𝑐 and 𝑝𝑘+𝑐
that appear around it in a given corpus (described in the following
section), where 𝑐 is the window size representing property context
(Figure 4). The architecture and optimization targets are the same
as in [9] but our use case differs from language modeling problems
in the choice of corpus specifying the sequential data to which the
model is applied.

2.1.2 Dataset and Application. For the experiments, anonymized
clickstream data is collected formillions of travelers and properties.
Specifically, for each traveler 𝑡𝑖 we create training instances by col-
lecting all the previously seen properties into sequences 𝑝 𝑗1 , ..., 𝑝 𝑗𝑚𝑖

.
From those training instances we slide a window in order to create
training examples [10].
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Figure 4: Training Dataset Batching

In our case, the order in which properties appear in the sets is
not important as it is in many NLP tasks. Given that a traveler’s
choice to view a property is affected by the website’s modules they
interacted with during their shopping journey, viewing a property
before another does not imply sequential preference. For this rea-
son we wanted to ensure that our model is trained with as many
possible permutations of the original sequences as possible. In of-
fline experiments this resulted in a significant increase in normal-
ized discounted cumulative gain (NDCG), precision, and recall.

Figure 5: Training Dataset Shuffling. We shuffle the proper-
ties within the traveler sequence after each epoch. This sig-
nificantly improved offline performance.

Finally, for each target property, 2048 properties are randomly
sampled based on the probability [10]:

𝑃 (𝑝𝑖 ) =
𝑓 (𝑝𝑖 )3/4∑𝑛
𝑗=0 𝑓 (𝑝 𝑗 )

3/4

Where:
𝑓 (𝑝𝑖 ) denotes the frequency property 𝑖 appears

2.1.3 Experiments and Results. For all experiments the optimiza-
tion setup consists of:

(1) The window size was 3.
(2) Stochastic gradient descent was used for the minimization

of the loss function.
(3) The batch size was 128.
(4) The learning rate was kept constant at 1.
(5) The model ran for 63 epochs.
(6) The embeddings weights were initialized using uniform dis-

tribution from -1 to 1.
After training, we extract the embedding layer from the result-

ing CBoW model. For each traveler, we look up the embeddings

of each property they have visited and average them to create a
“traveler profile”. We then search the embedding space using co-
sine similarity and retrieve the properties closest to the traveler
profile.

We compared these recommendations with the recommenda-
tions generated by a popularity-based recommender as a simple
baseline. The popularity-based recommender calculates for each
pair of properties their Jaccard similarity which for two properties
𝑝𝑖 , 𝑝 𝑗 is defined as 𝐽𝑆 (𝑝𝑖 , 𝑝 𝑗 ) =

𝑓 (𝑝𝑖 ,𝑝 𝑗 )
𝑓 (𝑝𝑖 )+𝑓 (𝑝 𝑗 )−𝑓 (𝑝𝑖 ,𝑝 𝑗 ) where 𝑓 re-

turns the number of times a property or two properties appear in
all the traveler sequences. In order to generate personalized rec-
ommendations, we score each property by taking the average of
its similarity score with all the properties a traveler has clicked on
and return the top 𝑘 properties based on that score. For example, if
a traveler has clicked on properties 𝑝1, 𝑝2 then the score we assign
to a property 𝑝3 would be 1

2 (𝐽𝑆 (𝑝1, 𝑝3) + 𝐽𝑆 (𝑝2, 𝑝3))
Table 1 compares the offline evaluation results of these twometh-

ods.

Table 1: Comparison between Model Settings

Algorithm NDCG@20 Precision@20 Recall@20

Popularity based Baseline 0.16441 0.03766 0.23977
CBoW 0.18412 0.03966 0.27548

2.2 Destination Recommender System
Using similar data collection methods as in section 2.1, we lever-
aged session-based search data to build a co-search matrix, with
the goal of recommending relevant destinations to travelers in the
Discovery phase who have not yet chosen a destination.

On the homepage, the target is traveler’s last destination in search
history. We want to recommend similar locations with similar des-
tination type (for example city, point of interest, or neighborhood).
For example, if someone searches for Austin, TX, we would recom-
mend destinations like San Antonio and Houston which are both
cities in Texas similar to Austin.

On a destination landing page, the target is the destination that
the traveler typed in the search engine. Since we know that the
travelers coming from a search engine are for a particular desti-
nation, we recommend smaller locations that are within the tar-
get destination. For example, if someone searched for France, we
would like to help the traveler know more about the place by rec-
ommending the most relevant cities/places in France such as Paris
(a city) or Southern France (a region).

Powering both of the above use-cases, the destination recom-
mender system (DRS) aims at identifying similar destinations to a
set of destinations travelers have interacted with.

2.2.1 Model. Formally, we are trying to model the conditional
probability distribution 𝑃 (𝑑 𝑗 |𝑑𝑖 ) where 𝑑𝑖 is the destination that
a traveler searched for and 𝑑 𝑗 is any destinations where 𝑑 𝑗 ≠ 𝑑𝑖 .
The model we use on the homepage, destination landing page and
Hotels.com search box is a matrix decomposition in which we de-
compose a very sparse preference matrix. The specifics of the pref-
erence matrix vary according to the application. On the home page
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the preference matrix is traveler-destination, corresponding com-
monly to user-item matrices in wider literature [8], [15]. On desti-
nation pages the preference matrix is destination-destination, cor-
responding to item-item matrices. For the search box, the prefer-
ence matrix is expressed between latitude/longitude coordinates
of travelers and destinations.

The model decomposes the sparse preference matrix into two
matrices of traveler and destination factors.These factors are dense
latent space representations of each traveler and destination, de-
noted 𝑥𝑢 ∈ R𝑓 and 𝑦𝑖 ∈ R𝑓 , respectively. To use these factors for
recommendations, we simply take the dot product of the traveler
and destination vectors to obtain a score 𝑠 = 𝑥𝑢=𝑘 ·𝑦𝑖=𝑙 , for traveler
𝑘 and destination 𝑙 , and rank the destinations by that score. This
yields the most relevant destinations for the traveler.

For the destination-destination preference matrix, the process
is identical except that the preference signal is expressed between
destinations (described in the next section), and the latent traveler
factor is now an “origin” destination vector. For the latitude/longitude
preference matrix, the preference signal is expressed between the
traveler’s location and the destination’s location, and the latent
traveler factor is now a “geographic origin” vector.

Irrespective of how it is populated, the size and sparseness of the
preference matrix presents a significant computational challenge.
To solve the decompositionwe use Alternating Least Squares (ALS)
[12], which is a highly scalable, efficient, andwell understoodmethod
for solving this type of problem.

2.2.2 Dataset and Application. On the homepage, we use recent
destinations that travelers have searched for in order to build the
traveler-destination preference matrix. Each destination searched
by a traveler receives a positive preference. Factorizing this ma-
trix into traveler and destination features as described above we
generate personalized recommendations for each traveler that has
searched for at least one destination in the last year.

On destination landing pages, we know the original intent desti-
nation of travelers. We leverage session-based search data in order
to build a destination-destination preference matrix. Two destina-
tions searched by one traveler in a single session receive a posi-
tive preference. Using the destination-destination preference ma-
trix decomposition we provide recommendations for similar desti-
nations.

On the Hotels.com search box, travelers are shown destination
recommendations based on their geolocation. The preference ma-
trix for this application is built almost identically to the traveler-
destination matrix, except that the traveler rows are now replaced
with traveler location rows. This enables recommendations to be
provided for a traveler who has no search history.

2.2.3 Setup. The deployed ALS model on Homepage has a num-
ber of hyperparameters tuned via cross-validation:

(1) Number of latent factors, 𝑓 , often on the order of tens
(2) Number of iterations represents the number of training loops

performed, often tens will suffice
(3) Lambda, 𝜆 is problem dependent but always <1

3 RESULTS
Our top priority is to improve the experience of our users, and
the machine learning models are only useful if they improve the
traveler experience. Sophisticated models are not valuable for their
own sake, they must provide significant value as measured by an
online controlled experiment. In fact, it was shown in [2] that im-
provements in offline metrics do not necessarily drive an improved
user experience for awhole host of reasons. At Vrbo andHotels.com
we have observed the same. We measure the impact of each new
algorithm or system using our internal A/B test platform. For each
model discussed in Section 2, the improvements on one of our core
metrics are presented in Table 2. The definition of the core met-
ric and the actual percentages are considered sensitive and cannot
be revealed.The recommended destinations model at Hotels.com’s
home page had the lower improvement and is considered the bench-
mark. The Table 2 shows the relative improvements against this
benchmark.

Table 2: Online Experiment Results

Brand Model Page Improvement

Hotels.com “Similar Properties” home page 3.25
Hotels.com “Recommended destinations” home page 1.0
Hotels.com “Similar destinations” landing page 1.975
Hotels.com “Search box recommendation” home page 2

Vrbo “Recently viewed properties” home page 4.25
Vrbo “Recent activity” landing page 2.25
Vrbo “Recommended for you” home page 5
Vrbo “Based on your recent searches” landing page 2.425

There is a significant difference in orders of magnitude in re-
sults between Hotels.com and Vrbo. At Hotels.com, typical trip
planning is relatively short in duration and with many travelers
booking last minute trips. Vrbo on the other hand is a vacation
rental focused site, where travelers are more likely to have long
shopping cycles and may search for a wider variety of properties
and destinations before making a final selection.This gives the rec-
ommendation systems much more exposure and therefore higher
potential impact.

4 CHALLENGES AND SOLUTIONS
The models themselves, though important, are a small part of the
overall system that provides and surfaces the recommendations to
travelers. The complete system consists of multiple backend ser-
vices and data stores as well as a front-end client. Additionally
components for experimentation (the aforementioned A/B testing
platform), instrumentation and monitoring are also required to en-
sure consistent uptime and technical correctness. In this section
we present our initial attempts at machine learning integrations
and the lessons we learned from those. We then describe our inter-
nal machine learning platform and how it addresses many of the
challenges we faced early on. We also describe the machine learn-
ing platform’s impact on overall data science efficiency, company-
wide.
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4.1 History
Initially at both Vrbo and Hotels.com, machine learning models
were directly integrated with the product’s codebase. At the time
there were few machine learning models in production and there-
fore specialized infrastructure wasn’t economical. Absent machine
learning specific infrastructure, embedding themodel code directly
in the backend software stack is simpler.

There are a number of drawbacks to this approach that com-
pound complexity as model updates become more frequent, how-
ever. Firstly, any model retraining or update would require rede-
ploying the entire stack. For home and landing pages, this is not
trivial. Those services are critical and must have near-perfect up-
time, or users will be unable to search for properties and therefore
unable to book. This slows down the speed of iteration and exper-
imentation, which is critical for machine learning success.

Machine learningmodels are very different from traditional back-
end systems. The code for training ML models is usually written
in Python, Scala or R, while most of the backend systems at Ho-
tels.com andVrbo are built in Java.This necessitates amodel “hand-
of” from one runtime to the next, and makes apples-to-apples test-
ing extremely difficult, particularly if there’s data processing code
required. Compute andmemory requirements are also significantly
higher than traditional backend systems. This means that adding
machine learning directly into a backend systemwill likely change
the requirements for the whole system, even if it’s only needed for
the ML model. Monitoring machine learning systems is more chal-
lenging as well. All the usual monitoring for uptime and latency ap-
ply, but it’s also important to monitor predictions (as noted in [2])
as a means of detecting bias, train-test skew, and model drift. Fi-
nally, the skill sets between data scientists and backend developers
are also very different. Managing software in production requires a
completely different skill set than building a powerful model. With
the model integrated directly into the backend, the data scientists
need to know a lot about that system, and the backend developers
must understand the computational and memory requirements of
the model.

All of these differences slow down iteration and experimenta-
tion. Redeploying the entire backend stack for a critical system is
slow and risky, even with appropriate application infrastructure.
Translating the model from one runtime to another takes time, and
testing is very tedious. The single most important thing a data sci-
entist can do with a model to increase it’s economic impact is to
test it online as much as possible, yet at the start of these efforts
that was extremely difficult.This necessitated an investment on the
part of Vrbo and Hotels.com to develop specialized infrastructure
specifically for deploying and monitoring ML models.

4.2 Machine Learning Infrastructure
Most companies with significant machine learning requirements
and products have a platform to accelerate ML development and
deployment. Some concrete examples include TensorflowExtended
(TFX) [1] fromGoogle, Bighead fromAirbnb 2, Michaelangelo from

2https://databricks.com/session/bighead-airbnbs-end-to-end-machine-learning-
platform

Uber 3, and FBLearner 4 from Facebook. We also developed a ma-
chine learning platform that serves models in real-time, stream-
ing and batch contexts. We decided to favor a microservice ap-
proach since the systems ML is integrated into are mostly Java
or Scala based. The microservice approach also solves the scaling
/ system requirements mismatch, as the ML model can be scaled
independently from the integrating system. For the purposes of
recommendation systems there are three relevant patterns to dis-
cuss: real-time synchronous, real-time precomputed (offline), and
real-time precomputed (online). These are diagrammed in Figure 6.
Here real-time refers to how the inferences are accessed, meaning
large numbers of small one-at-a-time requests as opposed to bulk
requests of the entire dataset (via SQL or Apache Spark 5, for ex-
ample). The platform was built in stages, usually driven by data
scientist / software engineering integration requirements, rather
than dictated top-down all at once. The result is a series of loosely
coupled components that were developed based on real-world use
cases.

4.2.1 Real-time Synchronous Inference (RTSI). This is a straight-
forward request / response pattern. The caller sends the payload
containing the model features, then the service invokes the model
in-memory and performs the inference, sending the result back to
the caller. This pattern is very simple and follows a RESTful way
of calling the prediction logic of models. Deployment is entirely
self-service, and requires only a small amount of code on the data
scientist’s part for instrumentation and packaging. It can support
any Python, Java or Scala machine learning framework.

The obvious disadvantage to this pattern is clearwhen themodel
requires a significant amount of computational power, or when
the required latency is low. Since the model is being invoked per
request, latency can be quite high depending on the model.

4.2.2 Real-time Precomputed (Offline) (RTPOf). If the inference scores
can be precomputed in an offline environment, they can be loaded
into a key-value store as long as there’s a suitable key. Examples
of common keys at Vrbo and Hotels.com are property ID, traveler
ID and destination ID. Then callers would only need to know the
key to retrieve the scores. This transforms what was a complicated
inference per-prediction into a lookup, reducing the latency by at
least an order of magnitude.

This approach has drawbacks too. If the key space has a very
high cardinality then precomputation and storage become imprac-
tical thus necessitating amove to the aforementioned synchronous
inference. Another drawback is the frequency of updates to the
key-value store. In many cases a simple daily or hourly update will
suffice, however some use cases require the precomputed values to
be updated continuously as new data arrives in the system. Updat-
ing traveler “profiles” based on their searches as they search on the
site is an example of such a use case.

4.2.3 Real-time Precomputed (Online) - (RTPOn). By combining
the real-time synchronous services with the key-value store, we
are able to listen to a stream of values (via Apache Kafka6) and
3https://eng.uber.com/michelangelo/
4https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-
backbone/
5https://spark.apache.org/
6https://kafka.apache.org/

https://databricks.com/session/bighead-airbnbs-end-to-end-machine-learning-platform
https://databricks.com/session/bighead-airbnbs-end-to-end-machine-learning-platform
https://eng.uber.com/michelangelo/
https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
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Figure 6: (a) Real-time synchronous, (b) real-time precomputed (offline), (c) real-time precomputed (online)

perform the predictions as the inputs arrive, rather than when the
predictions are needed. The assumption of course is that the pre-
dictions won’t be needed immediately, but some time after the fea-
tures become available on the stream.

When the model input (including key for lookup) arrives on the
stream, a stream processor service issues a synchronous request to
the model service to retrieve the score. Then the stream processor
inserts the score into the key-value store, where going forward it
will be available at low latency without having to recompute the
predictions.This results in continual updates to the key-value store
at high frequency. Should the number of input events become large
for a short period of time, it is possible to scale the model service to
handle the traffic, or if a delay is acceptable, wait until the volume
of stream events returns to normal levels.

Table 3: Mapping of Models to Inference Type

Model - Use Case Inference Type

Hotels.com “Similar Properties” RTSI
Hotels.com “Recommended destinations” RTPOf
Hotels.com “Similar destinations” RTPOf
Hotels.com “Search box recommendation” RTPOf
Vrbo “Recently viewed properties” RTPOn
Vrbo “Recent activity” RTPOn
Vrbo “Recommended for you” RTSI
Vrbo “Based on your recent searches” RTSI

4.3 Productivity
The combination of straightforward deployment, standardized in-
frastructure toolkits, flexible ML framework support, and separa-
tion from the integrating system has significantly improved the
iteration speed (and therefore effectiveness) of data scientists at
Vrbo and Hotels.com. Since the development and adoption of the
ML platform, the number of ML models deployed has grown ap-
proximately linearly.

5 DISCUSSION AND FUTUREWORK
At Vrbo and Hotels.com, we are always looking for new and better
ways to lead travelers to their dream vacation. Correspondingly,

our methods for personalizing landing pages and the home page
are always evolving. We present ongoing and future work in this
section.

5.1 Content Augmented Recommendation
System - CaRS

Building upon thework done on Property Embeddings (section 2.1)
and inspired by [4] we started developing a new recommendations
framework in order to incorporate additional meaningful signals
such as price or destination attributes (historic, romantic, etc.).

The aim of CaRS is to provide a recommender system that can
be used for both property and destination recommendations.We’re
developing CaRS in a way that allows us to generate both person-
alized (traveler to item) and non-personalized (item to item) rec-
ommendations while maintaining only one model.

For the rest of this subsection, an item will refer to both prop-
erties and destinations. We consider a destination “booked” if a
traveler booked a property within the destination.

Themodel uses sequences of clicked items as context and booked
items as targets from traveler sessions. Travelers are represented
as an aggregation (e.g. average) of the features of the items they
have clicked on. We train a neural network to generate a score
which represents how likely travelers are to book an item given
the previous items they have clicked on. The function learned by
the neural network can be used both with multiple items as input
so as to personalize results and with a single item if no personal-
ization is desired.

We use a pairwise loss; for each positive example we draw neg-
ative examples and learn the weights such that a higher score is
assigned to positive examples than the negative ones. Inspired by
[3], [13] we used our pretrained embeddings in order to identify
similar items that weren’t viewed by the travelers. This allowed
us to improve the performance of the model with negative sam-
pling based on the already estimated conditional probabilities pro-
vided by the embeddings. By sampling negatives near the decision
boundary we can improve ranking metrics like NDCG.

Combining content features with decision boundary negative
sampling, we saw an improvement in offline metrics like NDCG
and recall when we compared CaRS to CBoW.
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5.2 Multi-armed Bandits
Inspired by a paper on using multi-armed bandits for real-time
optimization of web page layouts [7], we have recently adopted
methods to optimize traveler experience via Reinforcement Learn-
ing (RL). The “arms” in this multi-armed bandit are various layouts
or other visual attributes of the page. Since we are looking to serve
layouts that will more often lead travelers to find a property, our
reward function is a simple binary reward offering positive value
whenever the traveler clicks. As previously stated in Section 2 not
all travelers have the same behavior and so we seek to learn how
traveler context influences preferences. We make use of contex-
tual bandits to attempt to automatically discover ideal layouts tai-
lored to users all exhibiting some shared characteristics such as
traveler segmentation, purchase history, or device type.The model
we build for the click-through-rate then has a certain amount of
personalization built in by using features which are not only de-
pendent on the particular layout that was served but also on some
context of the traveler.

RL is fundamentally different in several ways from more tradi-
tional ML approaches. With RL, there is a feedback loop in which
the model provides the front-end application with a layout and
then observations of what results were obtained from that lay-
out must be fed back into the model for it to update its parame-
ters. This is a stateful, real-time coupling to both the backend and
front-end systems serving the layouts which grows in complex-
ity as the scope of observations increases. Reinforcement learning
presents many new challenges for machine learning infrastructure
that was designed primarily with supervised learning use cases
in mind. However, as before simplicity is the best approach. By
starting with initial experiments focused on leaRning we have
shown the ability to identify the patterns likely to succeed at larger
scale whether related to deployement, offline evaluation or system
health monitoring.

6 CONCLUSION
In this paper, we introduced a way to implement personalization
for returning travelers while they are in the process of trip plan-
ning. Our contribution here is two-fold: first we share details on
how the systemwas initially created and then ultimately run. Next
we note lessons learned on the ways in which ML platforms can
be especially valuable for large e-commerce companies.We empha-
size the importance of simple solutions and of democratizing ML
model predictions to a large and varied organization. And finally
we conclude with details on extensions to personalization via Re-
inforcement Learning. Here we have begun to explore the usage
of Multi-Arm Bandits to determine the best possible layouts for
travelers that are in Discovery or Shop phases as well as improve
the current Property Recommender System (PRS) with content fea-
tures.
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